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Research has been carried out in the areas of (1) Two-level

atom and radiation pulse, (2) Effects of collisions on atomic

coherences, (3) Effects of collisions on Zeeman coherences, (4)

Colision effects in degenerate-four-wave-mixing, and (5) Dressed-atom

picture in laser spectroscopy.

1. Two-level Atom and Radiation Pulse (P. Berman, E. Robinson)

(1)The work reported in last year's Annual Report has been

completed. In collaboration with Dr. A. Bambini (Quantum Electronics

Institute, Florence, Italy), we have found an analytic solution

to the problem of determining the atomic state probability amplitudes

(2)when a two-level atom interacts with a radiation pulse. Until

this work, the only analytic solution that had been obtained for

smooth pulses (assuming non-zero detuning of the field from the

atomic resonance) was that for a hyperbolic secant coupling pulse.

The class of pulse functions for which we have found a solution

contains the hyperbolic secant pulse as a special case. All other

pulses in the class, however, are not synmetric about any time during

the pulse. For these asymmetric pulses, a qualitatively new feature

arises. In contrast th) the situation for symmetric pulses, there

are no pulse intensities for which the system returns to its initial

conditions. Robinson( 3 ) has given a general proof of this result

by relating the atom-pulse equations to an eigenvalue problem.

* Asterisks on references indicate that the reference is appended

to this report.

-1--



The pulses for which we have obtained analytic solutons can

have very long leading or trailing edges. We have given a physical

explanation(2) to the response of the atoms to such pulses. The

availability of an analytic solution for asymmetric pulses may

prove useful in problems where pulses are shaped to provide a given

response of the atomic system (e.g. laser-pellet interactions in

laser fusion).

2. Effects of Collisions on Atomic Coherenc'ýs (P. Berman)

In collaboration with T.W. Mossberg and S.R. Hartmann (Columbia

University), significant progress has been made in understanding

collisional processes in atomic and molecular vapors. In an atomic

vapor, a quantity of physical interest is the collision kernel

Wii(v'*)v) giving the probability density per unit timp that an atom

in state i undergoes a change of velocity irom V' to v, owing to

collisions with perturber atoms. For atomr in a superposition of

states i and j there is an analogous "kernel" Wij(v'+ v) (it need

not be positive) which describes the effects of collisions on atomic

state coherences. The coherence kernel is important in problems

relating to atomic spectroscopy where an exterr.al radiation field

creates a linear superposition of atomic states. The coherence

kernel specifies the manner in which collisions modify superposition

states; in turn the collision-induced modification alters the

absorptive and dispersive properties of the vapor. A complete

analysis of the line shapes associated with laser spectroscopy

can be achieved only with an understanding of the collision kernels.

-2-
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Conversely, the line shapes can be used to provide inforamtion on

collisional processes occurring within the vapor.

Formal expressions for the collision kernels exist(4), but

limited progress has been achieved in gaining physical insight into

those expressions for the case when the collisional interactions

$>r states i and j differ appreciably (as they will for most electronic

transition). Classically, the i and j state populations would follow

different trajectories during a collision, and it is not obvious

that a collision trajectory can be assigned to '.:he atonic coherence

(superposition state).

Using arguments based on the uncertainty principle, we have

shown(5)*, (6)* that collisions can be divided roughly into two

regions. Let b0 be some characteristic impact parameter in the

scattering process. For collisions having impact parameters b<bop

collisions may be treated classically leading to classical population

kernels and vanishing coherence kernels. The coherence kernel

vanishes owing to a spatial separation of the state i and J collision

trajectories. On the other hand, collisions having b>b° must be

treated quantum-mechanically. These collisions give rise to diffrac-

tive scattering contributions to both the population and coherence

kernels. An extensive theoretical article on this subject is in

preparation.

Experimentally,()6 7 the various conclusions mentioned

above have been verified using coherent transient techniques. It

seems that a comprehensive understanding of the effects of collisions

on atoms prepared in a linear superposition of electronic states has

been achieved.

-3- /



3. Effects of Collisions on Zeeman Coherences (P. Berman)

Another area where collisions can play an important role is

in experiments in which a magnetic state (Zeeman) coherence is

generated. With laser spectroscopic methods, such coherences are

generally created by the action of two fields as shown below.

-- 1

The action of the two fields leaves the atom in a linear superposition

of magnetic substates. Collisions modify this magnetic state coherence.

There has been significant renewed experimental interest in the

effects of collisions on Zeeman coherences'(8)

While formal expressions for the collision kernels exist (4), it

has been difficult to give a physical interpretation to these results.

In contrast to the electronic state case (See. Z), it is not meaningful

to distinguish populations from coherences in the magnetic sublevel

case, since these definitions will depend on the axis of quantization.

Thus, it becomes an interesting problem to understand collision

trajectory effects. Can polarization or population be transferred

from one velocity class to another?

With J.L. LeGouet (Laboratoire Aime Cotton, Orsay, France), we

have given the first physical picture of collisional effects on

-4-



Zeeman coherences. 9)* A collision can be divided into two regions,

r < r0 and r > r0 , where r is some characteristic atom-perturber

separation. For r > r0 , the common trajectory approximation is valid

and the collision mixes the magnetic substates. For r < ro, the

collision interaction is strong enough so that there exist adiabatic

states which are not mixed by the collision. Each of these adiabatic

states follows a distinct trajectory for r < r0 . The general theory

and method of calculation has been given (9); specific evaluations

of the collision parameters are in progress.

.4. Collision Effects in Degenerate-Four-Wave-Mixing (P. Berman)

In collaboration with L.M. Humphrey and P. Liao (Bell Laboratories),

we have tried to explain an experiment in which collisions enhance

certain Degenerate-Four-Wave-Mixing (D4WM) signals.(l0)* This is

another area that is receiving a great deal of experimental and

theoretical interest.(11) The collision effects are basically related

to those discussed in Sec. 3.

There remains an unexplained feature in Humphreyaad Liao's data.

It appears as if foreign gas collisions are depolarizing the ground

state of Na with cross-sections on the order of 100R2, whereas it is

well-known that such cross sections should be a factor of 10-7 smaller.

Work on the theory of collision effects in D4WM is continuing in

collaboration with J. Lam (Hughes Research).

5. Dressed-Atom Picture in Laser Spectroscopy (R. Salomaa, P. Berman)

A rigorous comparison between the Dressed-Atom Picture (DAP) and

Bare-Atom Picture (BAP) as applied to laser spectroscopy has been

-5--



carried out.(12) An article representing our work in this area will

be submitted for publication in the near future.

In the BAP, the basis states are those of the free atom and free

field whereas, in the DAP, the basis states encompass some part of

the atom-field interaction. Whereas calculations are usually more

easily done using the BAP, one can gian useful insight into the

underlying physical processes using the DAP. Moreover, when the

radiation field strengths (in frequency units) are larger than the

relaxation rates in the problem, the DAP equations simplify considerably

and lead to line shape expressions which may be given a simple inter-

pretation.

We have sued the DAP to obtain resonance conditions for (1)

traveling-wave fields interacting with three and four-level atoms

and (2) a standing-wave saturator and traveling-wave probe interacting

with three-level atoms. Moreover, we have analyzed a number of

coherent transient processes in which the DAP can be put to effective

use. Aa interesting duality between the DAP and DAP approaches

has been eiscovered (e.g., optical notation in the BAP corresponds

to free-induction decay in the DAP). A detailed comparison of the

various advantages and disadvantages of the DAP is contained in our

work. (12)

6. Previous Work

Articles related ti our past work on coherences produced by

radiative collisions,(13)*,(1 4 )* strong-field effects in radiative

collisions using a model potential, collisionally aided radiative
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(16)*
excitation in three-level systems, resonance fluorescence in

(17)* 1),9*
three-level systems, as well as two review articles(l8)*(19)*

have either appeared or are awaiting publication.
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Analytic solutions to the two-state problem for a class of coupling potentials
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Physics Departmen:t New York University, 4 Washington Place, New York. New York 10003

(Received 22 December 1980)

A class of pulse functions is found for which analytic solutions to the problem of two levels coupled by these pulse
functions is obtained. The hyperbolic-sacant coupling pulse is included in this class of functions leading to the
Rosen-Zener solution, but all other pulses belonging to the class function are asymmetric. The asymmetric pulses
lead to qualitatively new features In the solutions; In general, it is impossible to have a zero-transition probability
with such asymmetric pulses.

I. INTRODUCTION a nearly resonant oscillating field. In that case,
assuming the "antiresonant" component of the

A problem of considerable interest in physics is field can be neglected, the quantity Itff(r)/T takes
to determine the time evolution of a two-level on the role of an envelope function for the field
system whose levels are coupled by a time-depen- while afT represents the atom-field detuning.
dent potential. The probability amplitudes for Since Eqs. (3) are of such fundamental importance
the two levels in the interaction representation de- in ma.ny branches of physics, it is useful to have
noted by a,(t) and a1(t), obey the coupled differen- analytic solutions of these equations for various
tial equations envelope functions ft"). Of course, one can nu-

da1 /dt= -ix(t)e"'a2, (la) merically integrate Eqs. (3), but such procedures
can be costly (especially for large a) and do not

da,/dt= -•x(t)elwat, (lb) necessarily yield the more general qualitative

where w is the frequency separation of levels 2 features of the solutions.

and 1 and X(t) is the coupling parameter (assumed If Of a 0, a simple solution can be found for ar-

real). By introducing a characteristic time scale bitrary f(r). The probability amplitude a, or a, is

T and defining dimensionless parameters given by

a, = A, cose(r)+ Bi sine •r), (5a)T.tlT , (2a)I

a-wT, (2b) O(W)$f f(r')dr', (5b)

O8/r, S,2f X(t)dt, (2c) where A, and B, are constants. For a * 0, how-
(2c) ever, there are, to our knowledge, only two

smooth envelope functions f(7) for which an analy-f(r)fi X(TT')T/1, (2d) tic solution of Eqs. (3) has been obtained. One

one can transform Eqs. (1) into such function is f(r)= constf I for which the solu-

a f(3 tion' is

'a2 • -~if(T)ef 51a, (3b) a, 2 -A, 2 coso1 ,2 " +B•, 2 slnW,2 ,1 t (6a)

where a dot indicates d/dT. Owing to Eqs. (2c) and U.2=[ (a2 + 4P2)1/2]' (6b)
(2d), the function ft() is normalized as It should be noted, however, that this envelope

function does not vanish at r = *- implying that it
ff(r) dr=r, (4) cannot represent a physical pulse of finite dura-

tion. The other function for which an analytic so-
and the parameter S is the pulse area. lution of Eqs. (3) is known isf(T)=sechr. By

Equations (3) arise in any semiclassical two- employing the change of variable
state calculation in which the two levels, sep-
arated in energy by 4a iT, are coupled by a poten- z = J sechir'dr', (7)

tial X[f(T)/T. These equations also arise in two- "

state problems in which the levels are coupled by Rosen and Zener' were able to show that the gen-
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23 ANALYTIC SOLUTIONS TO THE TWO.STATE PROBLEM FOR A... 2497

eral solution in this case could be given in terms nonidentically zero at z = 0 and 1.

of hypergeometric functions. By equating Eqs. (10) and (11), one may obtain

It is the purpose of this note to indicate that an- M2/(6)t =D/z (I -Z) (13)
alytic solutions to Eqs. (3) may be found for an

entire class of positive definite functions f(r). and
The hyperbolic secant is included in this class of =iax(l -z)l[(l+A)z + (B -].(14)

functions as a special case, but the rest of the
functions are not symmetric about any givenr. In order to have a one to one mapping of a onto

This asymmetry leads to new features in the solu- z, we require that z(r) is a monotonically in-

tions. creasing function, implying that i is real and posi-

tive. This requirement used in conjunction with

il. SOLUTION FOR A CLASS OF FUNCTIONS Eqs. (13) and (14) implies the following restric-

Equations (3a) and (3b) may be combined to yield tions:

the following second-order linear differential A+ 1-sak, X real (15a)

equation for a,(r): B-k =iap, Mreal (15b)

'+ (la -Jll+D'a o. (8) A/1> -1, (16)

The amplitude a. obeys a similar equation with D real, D> 0. (17)
-o replacing a. In order to determine a class of

functions f•r) for which analytic solutions of Eq. In terms of these new variables, Eqs. (3) take the

(8) exist, we introduce the change of variable form

za(r))O (9a) 0, - \ * e' a

subject to the restriction that z is real and that
Z(4)O 9)a's i D tit eJ6f(d)a, (18b)

the-;Equation (10) becomesthe transformation Z(T) changes the range of the

Independent variable from (.coo) to [0,i]. z(1 -z)a"+ [c - (a+ b+ )Za1a1 -abal, 0 (19)

In terms of the variable z, one may write Eq. (8) with

in the form an,/aX[-1 + (1 -4D/ajsA)1/3]/2, (20a)

d( ( / , b a ia--1 -(1 4D/a2X)1/ 2]/2, (20b)

I a(10) c =1+ia A, (20c)

where a prime indicates differentiation with re- and Eq. (14) may be rewritten

spect to z. The general idea is to see whether or

not Eq. (10) can be cast into the form of a standard Z =a(I -Z)/(J+ 4). (21)

equation of mathematical physics. In this paper,

we determine the conditions under which Eq. (10)

becomes the hypergeometric equation' a=A1 F(a,b,c;z)

z(lz)ar+(Az +B)a,+Daza=O, (11) +AtzFF(a-c+1,b-c+1,2-c;z), (22)

where where F(a,b,c;z) is the hypergeometric function,

S1), (12a) and A, and A. are integration constants. The time

variable r as a function of z may be obtained by

Bac, (12b) integrating Eq. (21); one finds

D (1dc) eqaln[Zlw1 -Z)te n s (23)

and a,b,c are the constants appearing in the hy- The upper-state amplitude may now be calculated

pergeometric equation of standard form.3 We by combining Eqs. (23), (18), (20), and (12c) to
could determine equally well those conditions un- give A

der which Eq. (10) becomes a generalized hyper- a,= j(-.b)'Z/IzC(1 -z)'*'a•. (24)

geometric equation (equation of gauss); however,

the hypergeometric equation is the only equation By differentiating Eq. (22) and using some simple

of gauss that yields physical solutions which are properties of F functions,3 one finds

]4
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a2 =i(-ab)1I2[(ab/c)zOF(c -a,c -b,l+c:.z)A,
+ (1 -c)(1 -a) 1'•"•F(a -c+ 1,1b -c+ 1,1 -c;z)A 2 ]. (25)

The constant A, and A. appearing in Eqs. (22) and (25) may be evaluated by imposing initial conditions
a1(z = 0) and a,(z = 0). In terms of a,(0) and a,(0), Eqs. (22) and (25) become

a,(z)-F(abc;z)ai(O)a- / Z- F(a-c+ 1,b -c+ 1,2-c;z)a2 (0), (26a)
1-c

J( -a) 12z -F(C - 4,C - b, 1+ C;Z)az(0)

S+ (I -z)1"**",F(a -c+ 1,b -c+ 1, 1 -c; z)a,(0), (26b)

which together with Eqs. (20), (12c), (13), and (21) provide a complete solution to the problem.

111.Puf.f P(t)dl, (33)
In this section, we describe the pulse shapes ".1 ,

for which the solution (26) is valid and in Sec. IV,

we present an analysis of the solution in light of and an asymmetry parameter

these pulse shapes. The pulse shape P(t), as de- A=-.-- , (34)

fined by P+v
P(t) (fl/T)f(r), rut/T, (27) one can use Eqs. (28a), (21), and (31a) to obtain

i8 obtained from Eqs. (13), (21), (4), (23), and A I - (4/r) tan'•[1/( + x) 1t']. (35)
(2c) to be As A varies from -1 to 0 to -, A varies from -1

P(t), S +Z~ _2)11 (28a) to 0 to 1.
IT +AtIf Xa0, A 0 and the pulse is symmetric. In this

tuTin[a/(1-z)0 ], (28b) limit one obtains from Eqs. (28) and (21)

where S is the pulse area defined in Eq. (2c). In P(t),, (S/2vT)sech(t/2T), (36)

arriving at Eq. (28), we used the normalization i a dz/dr a 1 sech2(t/2T), (37)
condition (4) to obtain which corresponds to both the pulse and transfor-

Dapas 3$/i 3  (29) mation (Eq. (7)] used to arrive at the Rosen-Zener

and set solution.
Pulse width. To find the full width at half maxi-

mum (FWHM) of the pulse, we seek those values

without loss of generality, of z, labeled z,/,, for which P(a)=fAo and then
The pulse is characterized by Its area S, its calculate the corresponding t/l2 values using Eq.

time-scale parameter T, and the parameter (28b). From Eqs. (32) and (28a), it follows that
A(-1<A<o). Various properties of the pulse may Z1/3 may be obtained as a solution to
now be listed as follows:

Pulse amplitude. The pulse maximum A0 oc- 4(I+L)•/ I+ )ih/2

curring at 1+)2Za

IAm1/(2+ X), (31a) which yields values
7X+ 8* 44(1 + X)

tau= T([\ n(2+ X) - (1+ A) n(l+ X) , (31b) 11  X+ A +16A+ (38)

is given by Using Eqs. (38) and (28b) one can evaluate the

A 1 FWHM in t space asAo0 .- ,/ (32) r B 4 (1 +A)\
ouiT 2(+A) 3

_________

Pulse area. The pulse area is f!.P(t)dtfS. 1W"fm= T \)\+8-4n3-1+,\))

Pulse asymmetry. For any value X* , the - I+ 8-443"(\'1
pulse is not symmetric. Defining - ( ),Jj. (39)
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TABLE I. Pulse characteristics.

Amplitude & Asymmetry
A0 t'/T A FWHM HAW Comments

1--+(1ln -1) +4/ 19.1tT T ln2 Most pulse
(0 < 4 << 1) 2,/ area for

t <tMu

X-0 0 0 5.27T * Symmetric,
hyperbolic-
secant pulse

1 >> 4 1 I-Inh 4 19.1T XT ln2 M~ostapulse
2V 17 area for

t>t,,

ain units of (S/wT).

Half--area width (HAW). Another useful param- described in the previous section. Although Eqs.
eter is the HAW defined as (26) could be used to determine the transient re-

sponse to a pulse, we consider only the transition
HAW "I it -I..x [,probability induced by the pulse. That is, we take

where tN is the time defined such that half the as initial conditions
pulse area lies between ts and t,,. Setting

)IS-* #"i*P(tdt
"IM a,(t= a_,0), a a(z a 0)-a 0 , (41)

and using Eqs. (28a), (21), (31a), (28b), and (31b), and calculate the probability
one may obtain P" aI(tua9)j 2 aIa 2(zul)j(

AtHAW=T In[S'(1+&)ln-(-i, j, (40a) that the atom has been excited by the pulse. Set-

ting z t I on the rhs of Eq. (26b) and using Eq. (41),
where we find

I+(4b) P+\/,r IF(c -a,c - b,I+c;1)12

For symmetric pulses the HAW is infinite since
half of the pulse area lies between ta -o and labi .I'(1+c)q(1 -c+a+b) I
tat,.- However, for very asymmetric pulses Tci'i Ft(+a)r(1+b) I (43)

(An -1 or 1), the HAW is a characteristic long-
time scale pulse width.

The pulse properties are summarized in Table T
I for .-- 1+c(0<c<< 1), X=0, and X>> 1. ForP(t)" (vT/Si
An -1+ c or X>> 1 the pulses are very asymmetric,
containing narrow central peaks and long tails ex-
tending out toward t= -_o and taf+ o, respectively.
The case X . 0 represents the symmetric hyper-
bolic secant pulse. Less extreme pulse asymme-
tries are represented in Fig. I where pulse shapes
P(t)(wT/S) are drawn for X= -0.8, X= 0, and Xf 5.

IV. NATURE OF THE SOLUTION -1 • o5 0 5 10

The general solution for the state amplitudes is t/T
given by Eqs. (26) along with Eqs. (20), (12c), FIG. 1. Graphs of the pulse function P(t)(rT/S) ver-
(13), and (21); the class of pulse envelope func- sus t for?- -0.8, X 0 (hyperbolic secant), and
tions f(r) for which this solution is valid has been X=5.
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where r is the gamma function.3 By substituting (1). However, numerical calculations using Lor-
the values for a,b,c from Eqs. (20) into Eq. (43) entzian and Gaussian pulses do seem to indicate
and using some elementary properties of the that, for symmetric pulses, there is an oscillatory
gamma functionsP one may obtain the transition behavior of P, as a function of S, and there are
probability values of the pulse area S for which Pf- 0. In
P,= [sinh25+ sin2($2 -82)1/']sech(,ra)seeh(7r,+ 28), contrast to this result, the result for asymmetric

c 2 pulses and nonzero detuning 8 * 0 always yields
(44) P2 > 0 regardless of the value of S.

where S is the pulse area (2c) and a,<< 1, 8 Z 1. This limit implies that

8=,rak/2 (-,ra/2<8<oa). (45) 25/ira»1

As a function of S, P, increases until S= 18 1 and which Is an asymmetric pulse of amplitude 1/2 4X ,

then oscillates between sech(ira)sech(ra+ 28) FWHM 19.1T, and HAW XT In2 (Table I). The cor-

(sinh3 8) and sech(ira)sech('a + 28) (cosh'8). responding transition probability (44) is given by

Whereas the pulse was characterized by the pa- P,= (sinh28 + sin(S2 -"82)1/2] sech2U. (48)
rameters T, S, and A, the transition probability
is a function of the detuning parameter a w wT, The solution is graphed as a function of S for
the pulse area S, and the quantity 8 a rva/2 which a - 0.001 and two non-zero values of 8 in Fig. 2
reflects the pulse asymmetry through Eq. (35). along with the corresponding 8 - 0 solution [Eq.
We now examine the nature of the solution (44) (47)] for the hyperbolic-secant pulse. One notes
for several specific cases in light of the pulse that P. oscillates as a function of S about its sa-
structure described in the previous section. turation value of ' and that the oscillation ampli-

a = 0. For zero detuning, the solution (44) re- tude decreases with increasing 0 (increasing X).
duces to the well-known solution [see Eq. (5)] With increasing 8, it is the central peak region

that is providing the major contribution to the tran-
P 2 0in2 s. (46) sition probability since the pulse wing is becoming

8 . 0. For a arbitrary and 8 - 0, one must increasingly adiabatic [i.e., AlAW (, /T)> 1-see
have X= 0. The pulse is the hyperbolic secant Table I1. The sharply asymmetric nature of the
given in Eq. (36) and Eq. (44) becomes central peak cannot give rise to the zero-transition

probability effect (i.e., P, = 0 for SO0) that oc-
P,-sin`Ssech'wa, (47) curs with symmetric pulses. Even though the peak

which is the Rosen-Zener solution.' amplitude decreases as 013, the transition prob-
ability from the central peak region still leads to

Both solutions (46) and (47) are of the form P, saturation behavior for S> 8.
a I9(at,S)sinS/SI', where i((a,S) is the Fourier wat 1, 8a(wra/2)(-1+c)(O<rcir << 1). This limit
transform of the pulse evaluated at frequency alT. implies X- -1+ (( << 1) which is an asymmetric
Rosen and Zener conjectured that this result will pulse of amplitude 1/21_-, FWHM 19.1lT, and
be valid for arbitrary smooth pulses. Fu, asym- HAW T In2. The transition probability is given by
metric pulses, the general solution (44) clearly
violates this conjecture. Moreover, even for sym- P- [sinh (a/2)+÷sin 2(S 2-r0a'/4)A/'sechra,. (49)
metric smooth pulses, one can show that the con-
jecture is false by numerically integrating Eqs. and is plotted in Fig. 3 for a =1, f 0.001 along

with the corresponding P. for the 0 =0 hyperbolic-

a: O.001

880~
8S -0.523

0.5- 0.5 --... -

0 O2
S S

FIG. 2. Graph of the transition probability P, as a FIG. 3. Graph of P 2 versus S for ,e =J, 6 =0 (.\=0),
function of pulse area S for a =0.001 and 6 =0 (A=0), a=1 6 = -0.523 (A= -1 +0.001), anda =2, 6 = -3.138
6 = I k=637), and 6 =3 (h =1910). (A 1 + +O.001).
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secant pulse. A graph of P 2 versus S for a = 2, behavior. The 'ransition probability for this case
c = 0.0011 is also drawn (the corresponding hyper- is larger than that for the corresponding hyper-
bolic-secant solution has amplitude 1.4 x 10"5) bolic-secant pulse since the hyperbolic-secant
showing its similarity to the 8 = 3 curve of Fig. 2. pulse is adiabatic for a detuning 7ra >> 1.

These graphs are explained by the fact that the ira >> 1, 26 + ra >> 1, 161 >> 1. This adiabatic
hyperbolic-secant pulse is "semiadiabatic" (am= 1), limit can apply to a wide variety of pulses. The
and becomes increasingly adiabatic with increas- transition probability is given by
ing a (with a corresponding decrease of P.). In P,= (S/1 01 )e'210e0161-6), S2<< 16

contrast, the central peak region of the asymme- 2081/8) , S '<' i\ i
tric pulse is always audden with respect to 1/a. =e-•e'~"-) S'•6u (e#0) (52)
It is true that the long-tail region of the asymme-
tric pulse is also "semiadiabatic" [AIHAW(a/T), I] and
and this tail gives rise to the oscillations in P,. P=4 sin'Se"• (0). (53)
However, for a z 2 the central asymmetric region The entire pulse is adiabatic for the conditions
dominates the contribution to P, and a saturation given, but the central portions of the asymmetric
behavior similar to the 8 = 3 curve of Fig. 1 re- pulse can still provide the major contribution
suits, to the transition probability. The transition prob-
asymmetric pulse with X 1, amplitude 1/2Vtot , ability for the asymmetric pulse does not oscillate

as a function of S in contrast to that for the X = 0
FWHM 19.IT, and HAW XTIn2. The transition (hyperbolic-secant pulse). (Actually there is an

oscillatory term in P, even for the asymmetric
Pal(SI/6sechra&'", S2<8 (50) case, but its amplitude relative to the background

Pi(/sech e", S <(50) term is negligible.)
=u sechwae'm, S'• 6'. To summarize, we have found a new class of

Only the central peak contributes to P. since the functions for which analytic solutions of the two-
HAW wing is adiabatic for a detuning ira I [i.e., state problem may be obtained. These positive
w(a/T) - 4 tHAW>> 1]. Thus, the probability is much definite pulses vanish at tf - . With the exception
less than that in the corresponding hyperbolic- of the hyperbolic-secant pulse which is a member
eecant case (47), except when the pulse area S is of this class of functions, the pulses are asym-
strong enough to have the central peak region of metric. For the asymmetric pulses, the transi-
the X>> I pulse saturate P.. tion probability does not vanish for any pulse area

la >> 1, 6 a (va/2)(-1 + c), Ca = 1. This limit S> 0 (provided a # 0), a result that differs from
corresponds to the asymmetric pulse X =-1 + c the corresponding calculation for symmetric
(0<c<< 1) having amplitude 1/24T, FWHM 19.1lT, pulses.
and HAW T 1n2. The transition probability is given
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61166e11tr' nsitionjirobAbiliic -for asym ificiric couplhig pulses

E.' 3.Robirison [
l'iyss i~prswn, Nu'Yok ukesiy.I~aldg~-Place, Aiew 3fork Ne ork 00

(MWI2March 198D
In a 'cccn ýpc, j3itnbini and ~teriani (A.k Jhmblini and' O.`R. ilcrmzan, Phys. Rev. A

L1.,,24961CI98t prse~ted'analylicsolutiotips to- acertnin family of cohicrent-coupiling-pulses
fora to~lvd yst~n~TIhe shbw, ~ir nonresonant temporally asyrmmctricniciinbers or

- th ct~s~tht thre r no solutions corresponding to vitnishiing I un. itn probabilitics. In
ilils'Cdmfnftmn,A we X~l1 ile tho roblemi in grenter zgenrality, and demonstrate that this

propryisth nor fr'Llsyn~lm'tric pulses; and that~a vanishiCu transition probability is

TdooerofntolVe syte cope ya eatple n a make a change of varialbleCx~hternil- field has a long history in physics, dating I that transforms the equnttion of motion into the hy-I
back ,_Othe 1930's.1',* Originally motivated by in- pergEomotrie equation, Robiscoc4 has 4howil how
v -stigit ,tions onl itioms hi magnctic fields, theories of to generalize this to the case of decaying states.

sucI~tmshave :note recently been applied to Recently, IDambini and B~erman, have gone
hinser'relnled problems.? beyond the Rosen-Zcncr problem. They show that

Lca,2 be ilhe amplitudes of the two states. there is an entire class of envelope funlctions tha!
%We ssurnc that the coupling potential connecting may be mapped into the hypergeometric equivition,
the twb states is of varial'e amplitude and central of which the hyperbolic secatnt pulse is mecrely one
fric~iia, fiy fl. so that, in the rotating wave approxi- member. All VW) in the family, other than the

k mati~on, the ttrne-cepcitdent Schiridinger equation hyperbolic secant, arc asymmetric in time, i.e.,
becoiiies a pair of coupled eqliations fdr a I,a2: I V(t):/.-J'( -c). B~ambini and Berman show that for

(I) these asymmetric pulses, there is no case. apart
I from exact resnance, where there is a nonvanish.

*j V (I)e4t (1b) ing ttansitiont probability, a striking and surprisiog
*result.

Here AI's the detuning of fl from the atomic fre- In the case of the Itabi problem, on the other
quency._ We work in a system of units where fi= 1. hand, for any given dettuning, there are alW.-ys

For the case where V is a constant in time, the values of the pulse area for which the ampfltude a I
solutidit for initial conditions atI =0, a2 = I at I =0 returns to zero. fin the Roseni-Zener case, the am..
is j plitude aI( + oo) goes like (siai.' )/e, where it is the

I pulse are;., so thot Pere too, once the hyperbolic
ai(&14+ 21,1e fsin[(A2/4+ VAI 2g sceant envelope function is specified, one can find

1+) ~values of the area of thle pulse fo~r which a I( + -7 i
This is the Rabi problem. For this to be vanishes. Similar remarks hold) for other syn-i-

releVani~t, the approximation that thle rise time of metric potentials, where sohutions hanve been ob-
the field is much shorter thain other characteristic tamled with Colonlpters.6

.
7 It is a most remarkable

timcs should be a good one. fit their paper, Rosent feature of the Ilainbini-11crinan problem that It ad-
and 2encu2 considered a case where this sudden ap- mits no asymnictric eavelopes for A-/-0 with aI
proximtation wvas not valid. They were motivated nonvanish ia til rmisitioni probatbilty. That is, it as-
by a serious discrepancy between resuilts of thea serts that for a'~ytmnneric pulses Of the form sta-
sudden-approximation theory and experimennt. died, if thle amnpliItitles a2 = I and a I =0 at
They analyzed the effect of a smoothly varying I co, thenl at thime I = + co, fihe priolbahi!Pry for
jpul~e, Choosing a1 loy petblu)i. seceait twccallh of the finding tile sysicin in state I is anorrvalishlqn, i.e.,
ex.ctely Sc-I1vabk. iratulre of lihe cquations that reCS11t thc~re will Anlwt. s lie so(-me pocitilat ioi in state I for
from such' a time dependeince. For thle hyperbolic this cla%. of offl'-resoiairt a%yl1ln)t:riC pulse. No

Supported by the U.S. Of lice c0 Nav'al Riesearch RC~~cin" ~ OreC in p311 is Permitted
under Conhtact No. NOOO014-77-C-0553. for ally iu1PZC 0! t1e ni1':d States Governr,lent.
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previous prediction of this kind of behavior seems dynamics of the problem permitý a transition pro-
extant in tile literature. It should be understood bability of zero for cecrtain pulse areas, this ic;ans
that only envelopes of a single nlgebraic sign are * b (z m .4- ÷) also vanishes for those Values of .i. it,
being considered, so that, for example, pulses that short, we must solve an cigenvalue problcm alnd
are completely aaitis)ynimetric in time are excluded find those values of A 2 for which the solutions of
from this discussion. Eq. (3b') vanish at z =±T' Nosj for physical

Danibiai and lDrnian re'ch itheir conclusion by pulses, only real envelopes exist. For thcse A 2 is
obtaining a complete analytic solution to their real and positive. If none of the cigenvaluwI 2
problem. Since most pulse shapes do not admit of meets this criterion, A will have an imaginary pnrt
closed form solutions, it is of interest to inquire for all the eigcnfunctions of rq. (3b'), and noanc will
whether the nonvanishiing of transtion probabilities correspond to a system driven by an actual pulse,
holds for other smooth, asymnictric pulses and i.e., there will be no physically meaningful pulse
whehier this property can be demonstrated in a areas for which the system undergoes a transition
gceneral way, i.e., through the structure of the equa- probability of zero. In the following, we shall a.•-
tions of motion. It is to this question that we ad- sume a nonvanishing dctuning. Note that the case
dress the present work. of exact resonance is entirely ecquivalent to the dlc-

Equations (1) may be put in the form of uncou- mentary quantum mechanical problem of a partiele
"pled second-ordcr cquations, in a box, whose cigcnva.lucs A" are it -. Ini this

'l-'( •r/v-iA)a 4 1 .2a s , (2a) way, we confirm the simple result that the tran-si-
tion probability vanishes for pulse areas that ;.rc in-

•I2 --(V/V--iA)c2 -- V2 o2 .-O. (2b) tegral multiples ofr, if A-=o.
S t ,We should comment that if one constructs anDefining z = f j (t')dt- -i", with A- f Vd asymmetric potential from two temporally disirnct

and f = VIA. E-q%. (2) become, in the z plane, symmetric pulses, one can. by making each o:" the

A 4. acomponent pulses produce a net transition ampli-+ -a-- (3a tude of zero, cause the overall probability to van-
l,4I/"f .1-A a 2=O. h ish. To force the componcn.s to bc exactly nono-

b) verlapping ii, time requires that they be sharply cut
f off. Thus, ti.esc pulses do not conform to the

We assume, with Jambini and lierman," that f(t) I smoothness criterion ofr Jamnl,ini and FBcrman.5
does not chiange sign, so that the transformation, . Wc considcr now pulses where the imaginary

which differs from theirs, is single valued. If one term is present. We examine first the case of sym-
transforms Eq.'(3a) via the substitution metric pul:cs. Let 42 be a typicalpcigcnvalue. If

S(z,)j we replace the imaginary term by its negative, thenbma exp[(-// _30e/.P: I the resulting equation will have A4? for its cigen-

into an equation with the first derivative missing, value. Now, since f.(z) is symmnctric in z, f'(z) will
we I ave be antisynametric. Therefore, the transformation

IA/ j~_ J z-.--z rcveres the sign of tlhe imaginary term on

b f-L + 2 b-, = (3a') the left-hand side of Eq. (3b'), but leaves the eigen.
4, +f value unchanged. Immediately, 4 2-=4 2,% i.e., all
1..72 ] the cigenvalues are real, aflhou•.lh .•Amv not ncces.

=- A! - ES- C I h• . .4.b (3b') sarily larger than zero. For asymmetric pulses, (lie
4- 2/2 • tra nratiom :.----z does not reproduce the

Eq. (.b') reseanble; a onc-dimcnsional, time- "omplcx-conjugatc equation, and A 2 will n•l, in

indclpmmdcnt Schriklingcr equ:,aion for a particle of general, be the same as A**. This does not abso-
mass 1 mnoving ill tile coniplex "potctiar lutcly rule out tile po';sibility th:,t for particularsip) and dcl cuninj, one iniglIt have one or more

-.A.2 real and positive cigenvaluh%, but deonsi•, .te th1a
4" it could occiar only b7 ace-dent. We shall show inthe followingt th:,t Ih% condition, tha: must r.eccs-

whereAi has betn =e- I. sarily be fulr;led r•r A : to bv real for aymnictric
This equitiela is in Ib solveI 1uh1Cl Ito tile ini- pulsets are's. erdly overdcleternlild.

tial eomdiuicnis fhlat It :--t :,. - *" If tile To proecc'•. we will analy- e tIle problem from, a



perturbatlive viewpoint, and assunte that the entire present, and the eigcnvalucs A' will all be complex,
perturbation expansion can be sunined. We( do not unless there is a case where, for a specific detuning,
restrict ourselves to the first few terms, but study the odd powers of the cxpanslon sum to zero.
the pnrity.related properties of the full series. We The lattcr is :i extrcinely unlikely cir-
take the zero-order problen to be cunistanccp. Equations (3') is of the form

-be- bo ARo. -bo• (4) -b- .rf-i.. . b=A'zb,. (5)

This is llcrmitian and identical to a time- We requirc not only that the odd powers sum to
independent Schr•idingcr equation, which has only zero, but that they do so for a value of ). that is ex-
real cigenvaluhes. The hl.agilsary term -if'/2f 2  actly the square root of'/. We cannot quite cx-
is to'be considered as a perturbation. clude this possibility, but it is evicdntly hihlily

We wish to contrast the casc of symni.1qc and ovcrdctcrmincd,
asymmetric pulse envelopes. Assume f(t) to be To summarize, we have shown that the result
symmctric-f(:) is also symmecc. (lff(,m were obtained for particular asymmetric pulses by lBai-
not symmetric about t a0, f.(z) would lack syn- bini and lcrman,' naincly that there are no non-
metry about its origin.) For this case, the unpor- resonant cases for which the traimition probability
turbcd eigcnfunction b0 has definite parity, and the vanishes, is the notrmal consequence of the gSneral
perturbation -i~f'/f' is odd under reflection. It structure of the equations of motion, and applies,
follows directly that if one writes a perturbation apart from sonic remotcly possible accidental canes,
series for 12 as an expansion in the usual way, con- * to all smoothly varying. a'nymrnctric pulscs which
tributios{s from odd powcr-, of the 'strcngtih" of the possess envelopes of a single algebraic sign.
"interaction" will be absent. Since only the even
orders survive, and the strcng~a parameter is pure- The author is gratleful to l'rofcssor P. It. Berman
ly inmaginary, the resulting .=igenvalucs will bc real. for valuable ;iscussions of this problem. and for a

If the potential I'(M) is not r-ymninetric neither copy of the Bamnoi;i-Jltrmin inmauscript prior :o
I/f nor f,/f 2 will be operators of definite parity, publication. .1-c aA:o wishes to thank D)r. R.
nor will unperturbed solutions b possess well- I Salomaa for usefui comments. This work was sup-
defined inyersion properties, Hence, both even and ported by the Oflice of Naval Research.
odd terms in the pcnfurbati i ..xpansion will be

41. 1. Rabi, Phys. Rev. 1. 652 (1937). 4R. T. Robiscoc, rhy.. Rev. A 1., 247 (1978).
2N. Rosen and C. Zener. Phys. Rev. 40, 502 (1932). 5A. Dambini and 1'. R. Ierman, Phzy.. Rev. A Zj, 2496
3An extensive compiluiton of rcferences is givcn by L. (1981).

Allen and J. IL. 'b,:rly, Optical Rs.wonance and Two- (S. Ych and 11. R. Berman. private commntication.
Level Atains, (Wiley, New I ork, 1975). 7ME. . ltob-itsa, (unpublished).
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NOBLE GAS INDUCED RELAXATION OF THE Li 3S-3P TRANSITION SPANNING THE SHORT
TERM IMPACT REGIVE TO THE LONG TERM ASSYMPTOTIC REGIME

T. W. Yossberg,* R. Knchru,+ T. J. Chen, S. R. Hartmann
Columbia Radiation Laboratory, Dept. of Physics

Columbia University, New York, NY 10027
and

P. R. Berman
Department of Physics, New York University

4 Washington Place, New York, 1W 10003

Photon echoes have a doppler free character which allows one to study
relaxation processes which would otherwise be hidden in the inhomogeniously
broadened spectral,.profile. It has recently been shown, for example, that
contrary to expectilon, a radiating atom in a linear superposition of dis-
similar electronic states can undergo identifiable velocity changing col-
lisions 11). Studies of this nature require an examination of the sub-
doppler region of the s;pectral line shape. The effect manifests itself,
in the case of photon echoes, in a dependence of the effective relaxation
cross section aeff on the excitation pulse separation *r. In this paper we
report measurements in Li vapor where T can be increased into the regime
where Oeff once again becomes independent of *r. In the limit T= 0 we mea-
sure c0 which is the phase changing cross section as calculated by Baranger 14
while in the large i limit we measure a,, the average total scattering cross
section of the ground and the excited states. Our data at intermediate
values of T is usd to determine the form of the scattering kernel and the
average velocity change per collision. These measurements are for the
2S-2P superposition states in atomic Li perturbed by each of the noble
gases. For lie perturbers the scattering 'ernel is found to be Lorentzian,
for the other perturbers it is Gaussian.

We use a N2 laser pumped dye laser to generate a 4.5 nsec light pulse
at the 6708 A 2S-2PI/ 2 transition of 7 Li. The pulse which has a 6 GHz
spectral width is attenuated, split, delayed an amount r, recombined, and
directed into a cell, whose effective length is 10 cm, at 525 + 150K
containing the Li vapor (at -10-6 torr). For short values of T the polar-
izations of the photon echo excitation pulses were orthogonal in order to
reduce the effects of detector saturation which arose because of the non
instantaneous response the Pockels cell shutters used for their protection.

For a superposition state relaxing at an effective rate reff=nv 0 eff
where n is the perturber density, v is the average relative velocity of the
collision partners and ceff is an effective cross section, the corresponding
echo intensity will decay according to

I =1 oexp(- 4 refft) (1)

and since reff varies linearly with perturber pressure P

I(P) = I(O)exp(-BP) (2)

where the constant 6, which we measure directly, is characteristic of the
perturber ond the collision process. We deteruine ý at several discrete

Supported by the U.S. Office of ReReproduction in whole or in part is permitted
under Contract No. N0014-77-Co0553. for any purpose ol th2 United States Government.
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values of T by measuring the echo intensity as a function of the perturber
gas pressure. The value of Geff is obtained from

a - r eff/nv =P/4nvT. (3)

Fig. 1 Plot of Oeff(T) versus T. Error bars represent statistical uncertainty.

In fig. (1) we summerize our work by plotting all measured values of
oyff as a function of r. A dependence on x arises because each collision
o the Li atom with a perturber gives rise to a velocity change in addition
to a phase change of the Li superposition state. If only phase changing
collisions occured Oeff would be independent of i. Velocity changing col-
lisions have a delayed effect which manifests itself in a dependence of
Geff on r. Our data indicates that at the shortest values of T eeff in-
creases at a large and relatively constant rate while at higher T it
levels off considerably.

Echoes in the optical regime (photon echoes) are generally formed in a
volume large compared to the wavelength of the optical transition. Thus
any atom experiencing a velocity change sufficient to displace it an ap-
preciable fraction of a wavelength from the position it would otherwise
have taken in the phased array which radiates the echo will iit necessarily
reinforce the echo signal. As x is increased the resulting displacement
increases and the effect of a particular velocity change is enhanced. This
proceeds up to a point that being when T is so large that all atoms experi-
encing a velocity change are effectively eliminated from the echo formation
processes. The data of fig. (1) at large t shows this effect clearly in
the weakening 'Aependence of eeff on T.

/,



In what may be called the collision kernel approximation Flusberg [3]
has shown that aeff may be expressed as

eff 0 e0 + av [1-(l/t) f dt j(kt)] (4)
0 v

where Oo(rv) is the phase changing (velocity changing) cross section and

g(kt) f exp(ikt4v) g(Av) d(Av). (5)

The collision kernel g(Av) gives the probability of a particular change Av
in the component of the velocity along the laser pulse direction. For
kT << 1

a + a 1 k2 T2 <V2>(6eff 00 +civ kT <Av2> (6)

where <Av 2> is the second moment of the collision kernel. For kT >> 1

eff 0 + av [1 - ng(O)/2kT] (7)

where g(O) is the amplitude of the collision kernel at Av = 0.

Our data at short I does not fit (6) well, shorter excitation pulses
would have been required to enter the regime where this approximation is
valid. Our data does suffice however to use (6) to estimate c 0 and we
find that except for Ile we agree to within a few percent with measurements
of 0O made from line broadening experiments [4]. Our estimate of aO for
He runs -10% high.

The solid line curves of fig. (1) were obtained using an explicit form
of the collision kernel. For all perturbers excpt Ile we have used a
gaussian kernel

g(Av) - (l1/A uo)exp(-Av 2/u 2  (8)

while for He we have used the Lorentzian kernel

g(Av) (uo/Tr)/(u2 + Av 2). (9)

We vary u0 and av to obtain the best fit. All relevant parameters are
tabulated in table I.

'able I

Perturber 00 oV C O Uo0 +ov u0  Co 0 (from fig.2)

He 99 R2 49 R' 148 A2 247 cm/sec 146
Ne 101 47 148 1140 146
Ar 181 145 326 1400 338
Kr 206 170 376 1320 356
Xe 233 200 434 1320 434

An alternative proceedure for presenting our data is to plot a as
a function of T, see fig. (2), in which case we expect that from



0 eff -(a0 + v) V - ivrg(0)/2k (10)

Fig. 2 aeffT plotted versus r.

and we should obtain an assumptotic fit to a straight line whose slope
yields G0 + av = o• and whose negative intercept yields the product of 0V
with g(O). The values of o0+ov - oc, so obtained are compared with that
calculated from the data of table I.
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1. INTRODUCTION Isubstates Is Investigated. Coherent superposi-
tIons of magnetic substates (magnetic momnents,

* Laser saturation spectroscopy experiments are Zeeman coherences) are conveniently created and
beginning to provide an impo-rtant probe of coi- probed using the "1three -level" system of Fig. 1.
lislonal processes occuring in low pressure The 1-2 transition is excited with a nearly mono-
gases.' Trhe elimination of the broad Doppler chromatic laser beam and the 2-3 transition is
background encountered in standard spectroscr jy probed witi, inothcr colinear laser beam. Level

l permits a more sensitive measure of the manr.er 2 (shown for j = I) is (2j +i I1) fold de~generate; Zoe..
In which collisions perturb the e.nergy levels and man cohicrences within level 2 may be produced
alter the velocity of atoms. and detected usingy a proper choice of the laser

patclryiersigposstamabe beam polarizations. Owing to the Doppler effect,

studied iii such experiments is the way In which the excitation -detection scheme excites or probes
collisions perturb sup)c)rposilion stites in atoms only those atoms having a specific velocity coni-
that have been created by an atoin-field interac- ponent along the laser beam direction. Thus.
lion. Since the various internal titates comprising any collision-induced modification of the Zeeman
the sproiinstate are gene rally shifted and coherences for atoms havinog a specific longitudinal
scattered differenlly in a collisicn, one is led to velocity can be monitored in such a systemn. The
a somewhat complicated description of the entire Zeeman coherences tend to be detreyed by in-
scattering process for the superrosition state, separable contributions from collisional effects
especially if collisions can also couple the suoer- on the internal (shifting and mixing of magnetic
position levels. Formal theories2- have been i sublevels) and external (state-dependent scattering
developed to describe the scatteting and time 4 for the differ, nt magnetic sublevels) atomic de-
evolution of atomic superposition states via a I grees of freedom. In such experiments, the col-
quantum-mechanical transport equation, but lit- lisi')nal relax'ation is determined by the number
'kle pro-ress has been made in obtaining solu- of collisions per lifetime of the level under con-
tions or physical interpretations of the results.
It Is the purpose of this paper to provide a sim- i
plification of the transport equation and some- 3
additional physical insight into the scattering pro- -

cess. Methods of semiCIL SSiCal scattering theory
are used to achieve these go.als.

The specific problem we choose to study in- -

v'olves the scattering of atomis prepared in a linear
suepoiio f anei sbtae o lvlFIG. 1. "Three-level" scheine for depolarizing colli-

characteriz.ed by interrial-angu,,ilar-miornentumi Sion Studies. 1.L% ck 1 aind :5 are ncondc'gnerate. Level
qu~tntuin nuniberj. ' lie xsay in %%hich collisions 2 has three sul-stateb %'.lich, thoughi rparatitdy Lindicated
couple, shift, and scatter the v'ai aous magnetic In the Iig-urc:, are assunied to be energy degecnerate.

Supported by the U.S. O~ice .(A 1I.: ! .ewaich Reoproduction - in Mwhle or in rpatt is J~ernitlted
under Contract flo. [100014-77-C.uA3. jotr any puipuse. of the United States GxentIVOMt.A
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;- sideration and the specific interatomic potential. and those expressions are evaluated in the various
It should be noted that collisional depolarization semiclassical limits discussed in Sec. II. In Sec.

studies are not new. Optical pumping techniques IV we return to the problem encountered in laser
have been used to investigate depolarizing col- spectroscopy and examine tile semiclassical limit
lisions between optically oriented excited state of the transport equation for atomic multipoles of
atoms and ground-state perturbers. 4 However a degenerate level. A summary is given in Sec.
the general nature of such optical pumping work V.

t' (broadband sources, total cross-section mea-

surements) does not lead to results that are overly .ASCATOERING THEORY
-sensitive to velocity-changing effects, Recent
laser saturation experiments5 based on schemes A few years ago, the development of research
similar to that shown in Fig. I provide a more In the fields of collisional rotational and vibra-
sensitive measure of such effects. tional excitation of molecules,"'8 and of electronic

In attempting to analyze the scattering process excitation and charge transfer in atoms9 stim-
for an atom in a linear superposition of magnetic lated efforts for obtaining a semiclassical descrip-
substates one is naturally led to examine the ap- tion of inelastic collisions,0*-1 which should be,
pl2cability of the classical pictures shown in Fig. by far, more tractable than a purely quantum ap-
2. The first drawing represents the single-tr- proach. Since certain procedures in these theo-
jectory limit. The dependence of the deflection ries are similar to those encountered in obtain-
on Internal state is negligible so that the internal Ing semiclassical limits of elastic scattering,
and the translational motions are decoupled. The it Is useful to recall that two semiclassical ap-
second scheme depicts the situation where a diag- proximation schemes"7 may be used to calculate
onal representhtion has been found. Then each
sublevel obeys the rules of elastic scattering
along a' substate-labeled trajectory. When none .

of these extreme situations holds, Is a classical f(O)= - • (2i+ I)(c20'' - 1)P,(cosO), (i)
picture still possible? Answering this question 2irf

would help to complete the blanks in the third (where K is the magnitude of the atomic wave
drawing of Fig. 2. It should be noticed that the vector and th is the phase shift of the I-labeled
existence of a classical picture Is questionable partial wave).
since depolarizing collisions imply a coupling (I) The first method Is the semiclassical phase
between the Internal motion, which is highly quan- shift approximation, which is valid when the do
tumlike due to the smallness of the electronic Broglie wavelengtth- is much smaller than the
angular momentum, and the~translational motion distance of closest approach-r.. In this form of
which can be quasiclassicalrV We shall discuss the JWKD approximation, each 17, Is calculated
applicability of the various limits and approxima. along a classical path which is characterized by
tions in terms of standard treatments of collision the initial velocity and the impact parameter
problems. (I+'J)/KC. Although the 71 are calculated along

In Sec. II various methods available for treating classical trajectories, the classical correspond-
Inelastic scattering, when the de Broglie wave- ence, between scattering angle 0 and impact param-
length of the colliding particle is much smaller eter is lost in Eq. (1) since a large range of I
than the characteristic dimension of the interac- values contribute to scattering at angle 0.
tion region, are reviewed. In Sec. IIl exact equa- (ii) The second method, valid under the more
tions for the scattering amplitudes are obtained I stringent condition ••T << , is the classical tra-

jectory limit. The condition J7 << ir' permits
one to retain in Eq. (1) only those I values such

"• • (•that the impact parameter (I+ )/1K corresponds
* T-b (to classical scattering at angle 0.

(d) A number of papers have explored the conditions
FIG. 2. Schematic representation of atomic trajec- for generalizing the JWKB approximation to in-

tories during a depolarizing collision. In (a) an atom elastic processes1 " s using an approach which
In a superposition state is scattered along a trajectory was initiated by Kemble.15 They have concluded
common to the three substates which are nm\cd by the that such an extension is possible only when the
collision. In (b) a distinct trajectory is associ-atcd with atomic translational motion nearly p
each substate and no transition between substates Is In-
duccd by the collision. In (c) the single-trajectory ap- of the internal states. In the case when the addi-
proximation is not %alid and transitions arc induced be- tional condition /rX <-T.. is fulfilled, the JWVK13
tween substates: \hat trajectory does the atom follow? extension is thus possible only wh(-n atoms follow

A
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the same common spatial trajectory In any of the operator P •, one immediately notes that, if the

coupled internal states as in Fig. 1(a). A corn- "instantaneous" axis of quantization is taken along

pletely different approach has been developed T, then the HIamiltonian is a functionof "i and 1,
under the name of classical S-matrix theory by and commutes with 1, (recall that 'i.I :0 since F

IMiller and Marcus.'°,l They treat the Internal is the interatomic separation and j acts in the
1 degrees of freedom quasiclassically, retaining active-atom subspace). Thus using this basis,

only' the interference properties of quantum me- known as the helicity representation after Jacob

chanics, since they calculate scattering ampli- and Wick," one concludes that the various mag-

tudes. In these papers there is no apparent con- netic sublevels in this representation are coupled

dition of common trajectory. A special mention only buy the rotation of the internuclear axis during

must be made to the work of Pechukas'6 which a collision. Two limiting cases may be envisioned:

bypasses the common trajectory condition at the (i) If the various instantaneous magnetic sub-

expense of complications with a noncausal inter- states experience approximatively the same col-

Saction. lisional Interaction tthe explicit condition is pre-
In light of these general methods let us examine scribed in the next section), then the notion of a

the depolarizing collision problem. A ground- common classical trajectory may be valid. The

state spinless particle, the perturber, collides coupling between magnetic substates induced by

vith an atom having internal angular momentum the rotation of the internuclear axis can be sig-

, The magnitude of j Is on the order of a few nificant In this case since the "instantaneous"
r //and is supposed to be much smaller than that efgenfrequencies differ by less than the inverse

of the translational angular momentum. Since duration of a collision (i.e., the helicity repre-

the collision is assumed to result only In a change sentation is not an adiabatic one in this limit).

of direction of f, the other numbers which charac- The coupling and scattering of the levels can be

terize the Internal state of the active atom are calculated using a semiclassical phase-shift ap-

implicit. The effective interatomic potential is proach. One expects that the limit of nearly equal
a function of the Internuclear distance ? and of collisional interaction for the different substates

the angle (f,f). is achieved for collisions with large impact pa-

A classical S-matrix" method 0'"' seems very rameters.

tempting for solving the problem formulated in (ii) In the other extreme, one can imagine that

this manner. With this approach, for given initial the helicity representation is an adiabatic one.
and final values for the variables describing the The various magnetic sublevels experience sig-
system (internal and interparticle angular mo- nificantly different collisional interactions and

mentu", energy), one calculates S-matrix ele- are scattered independently according to the equa-
ments classically along the trajectory connecting tions of classical scattering theory. Normally,

these Initial- and final-state values. A phase one requires small internuclear separations to

611. dr/i evaluated along Le f'rajectory -is achieve this adiabatic limit."0

.- - a -c--mat, enabl4g- It is the classical trajectory limit of these two

one to account for any quantum interference effect extreme situations which is illustrated In Figs.

arising from contribution of several trajectories 2(a) and 2(b). One might exoect that the range
to a given S-matrix element. The classical S of validity of the seminclassical picture could be

matrix has the advantage of eliminating the dis- extended by combining these two approximations.

cussion about common trajectory for the various For example, in a given collision, limits (i) and
magnetic substates since it is only the initial- (ii) could be used for large and small internuclear
find final-state variables that determine the scat- separations, respectively. The precise conditions

tering process. However the solution of the prob- of validity of these different situations are exam-

lem in the frame of classical meihanics is rather ined in the next section.
difficult: the couple of colliding particles in the
center-of-mass system has 8 degrees of freedom Iii. CALCUI.ATION OF'IlE SCATTERING
and after taking account of the conservation of(' "AMPLITUDE

of the total angular momentum J, of total energy
L, one Is left with three differential equations, The calculation is performed using the helicity
two of which are coupled. In general these equa- representation which has been defined in the pre-

tions must be solved numerically. ceding section. During a collisi.on, the : com-

If instead, we adopt a quantum--mechanical for- ponent of the internal angular momentum changes

nmulation of the problem, certain simplifications from an inittll value 4l11 relative to a quantization

are possible. Since the interatomic potential de- axis directed opposite to the initial velocity (i.e.,

pends only on the quantum variable P and on the in the direction of the interparticle separation



"f) to a final value f1im relative to a quantization where 1,(r) is the interatomic potential In sub-
axis which is taken along the final direction Gep. state ,11 and
The scattering amplitude takes the closed form'?

(_ 1)V-= +. )-r t l' .•

fl"" (- I)2'i" •(2J+ l)(S•. -6MM.) .I1)[(l)-'if lj/Zf 1.v', (e ) = 2iKJ + 3S
2 00 (2), In the absence of coupling between the channels,X 60.., ,0), (2) Eq. (4) reduces to •"• ,)"

"where So . is an S-matrix element and . ,, ) (4) ru t)
is the rotation matrix of rank J. The internal r. u 2 - d - 2P +V#0.+ 12• TzA-O (5)
angular momentum j and the relative orbital angu- 211 dr• 2  u
lar momentum r have been coupled into the total
angular momentum J and the summation is over The general solution of this equation in the JWKB
all allowed values of =f+ . The S-nmatrix ele- approximation is a linear combination of functions
ments can be obtained in terms of the asymptotic ciQj.Vi6A'f where

p form of the radial wave functions q, )`(r) as (see
Appendix Af( o2V, pedLJ +~v 1)= ji 2_211 V(r.

lim•I Urr = 2J + 1.

X- J "M.,•e* (- (3) f •
li,4 , .

This boundary condition selects appropriate solu-
tions of the radial equation . This suggests that one tries solutions to Eq. (4)

, •)of the form

l, O ',4 ( '4) .t . ,2 (r ) = M v Cr ) -- • * • , ( ,') -F I.T (7 )

, P'MV The standard theory of second-order differential
which Is derived from the Schr6dinger equation equations states that, In addition to the boundary
(see Appendix Ai. In this equation, g is the re- conditions, a supplementary condition is needed
duced mass, and to determine bW()').1  We have chosen the follow-

Wj ) (v~ +i.+1), . . ! ing condition:

1 * be'QJfm + b -c* e -'f ý (b e'Olv + b -e'M =0(8)

IMJ ) I I 2 J
which transforms Eq. (4) into the set of first-order

differential equation

MO(= Pbw `2'l.V, 3 1 7  _ (b;M e'QmJ' ~d + 4bM.vle -(Q#M. 140"))

where X.=*,(.,M11)xA(,,1I)/r 2 and a prime Indicates. b Am' -A v,b"V,, (S1)

Except within a distance of a few -; from the turn. where
ing points where PV 's close to zero, these "exact"
equations may be simplified by using the condi- A _*2i ) 2 (X•,6S., 4,
tions that we have imposed at the beginning. From
,r, it follows that "<,/hi and since j<<J,

) it follows that iiX,.,/2(SP,. 4 1 1 )11 2 <<',./Ii. Using
these tNho inequalities one may neglect the terms Thus, the inward wave (represented by b-,) is de-
having rapidly varying phase factors in Eq. (9) coupled from the outward wave (represented by
and obtain i b*). This is the essence of the semiclassical ap-

%/



proximation and can be considered as an expres- (VHVM.)
sion of microscopic causality. However, the semi-
classical approximation requires, in addition, E,

Athat a connection can be made between inward and
outward waves at the classical turning point. This
is tccomplished provided one of the two following

-conditions Is fulfilled14 .

(I) IPJ, -eJv,,I<<PV+dJM•,. This condition per-
mits one to define a turning point, which Is com-
mon to all the channels. When in addition _<<"_,0 r
a common trajectory is available. adiabatic

(i1) J,• - ,•) 1>> ,vr/2(,tf PIVI) 1/. In this appraximaton
case the Av.v, In Eq. tI 1) are very rapidly varying
functions of r. Thus the substates are not slg-
nificantly mixed by collisions and the b•.* are ap- FIG. 3. The spatial domains for adinbatic and single-
proximately constant. This decoupling corresponds trajectory approximations tre represented in the caso
to the adiabatic approximation. , of continuously decreasing .V(r)-V, (r)J. At ro both

These explicit requirements for a semiclassical approxImations are valid.
description, correspond, as expected, to the lim-
iting situations that we have evoked in the pre-
vious s/ection. In terms of the potential difference 1 .( when I<0,
bb-tween the internal states, the above conditions di vJTv(t)l when I >O, (13)
are, respectively, transformed into (

I1Mr) - v,16r)I<4(P '+6,MI)/2I1 =RF. (12a) where the r;ýlal speed v,v(r) Is ,

Ila(r) - V~t.\>, -+,, (r)= PX•(r)/t when r 0ro,-, > Y6,, Jlf ,,,O- .-, x -• i "=E .,(14)
;FA ((?.1VM *I v.b',()=(?.,mv(r))./Vu when r>ro,

Condition (12a) requires that the difference be- and r$ýrPlr is the coordinate of the classical turning
tween the scattering potentials for different mag- point in channel M, with angular momentum J.
netlc substates be small enough to allow for a Two different situations may be examined in the"single-trajectory" approach to the problem while: limits that y(rp) is larger or smaller than re.
condition (12b) requires that the potentials diffcr i r(TP) < ro. The incident particle first reaches the
enough so that the collision Is adiabatic with re- radius r. at a time I; which is.1I independent as-
gard to the helicity eigenstates. Except in the suming a common trajectory r,(t) for -*<J<t;
vicinity of a classical turning point, E, is of the (since this interval corresponds to r.>ro). In Eq.
order of thermal energy and is much larger than (11) we replace b;,,(,) by c,,(I) defined by
E2 which is nt the order of Ji2K/.ur/. Therefore,
throughout the classically accessible region, at c~vt)=b.,M(r,()), •<t; (15)
least one of the inequalities (121 is satisfied byany otenialdiffrene. Tis garateestheand find that c.,.(t) obeys the differential equationany potential difference. This guarantees the
general validity of a semiclassical description of
depolarizing collisions. d c M(t E =_ M,(t)cJV,(t)S i< (16)

As an illustration, we consider a simple poten- (1
tial such that JV.q(r)-Vv, 1(r)I is a monotonic, de- where
creasing function of r. Thus if re is a distance
such that EL<*l'm(r,) - 1`,=(,.o) J<< E,,, the condi, l B.(tl [X#VrJ(1))6,.M+X;(r#(I))62 ,•.. 1  (17)
tions (12a) and (12b) are fulfilled. respecti,-ely,I"
when r>ro and r<?,. This situation is rept, I
sented in Fig. 3 which exhibits the overlap o the X exp" J [V(r,())-VM.(r,(t'))1d1' t<i;.
adiabatic and single-trajectory regions. In tf situation one may transform Eq. (11) in order i0 In arriving at Eqs. (16) and (17), xe set .
examine the classical motion character of the - (IPIV 4 J•V.,)/2t- itv,(r) and evaluate the phase dif-
problem. We define a set of classical trajecto- ference (i/li) to (Sp. -1P.*)dr' to first order in
ries using a time parameter t. 'rhe radial co- V.- *0..

• ordinate rl(1) satisfies the equaiions i n the.regioon r<ro, the b,(r) are constant owing



to the adiabatic nature of the collision for r< r-.ib; 2 (c')=i (22)
There is a classical trajectory r,., which may be .
associated with each helicity state and a corre- This equation can be put into a more transparent
sponding classical turning point r.'•T'. The JWKB form if time evolution operators are introduced
connection formulas are used at the turning point such that
to-relate b*JV(r) and one finds

QafrP) .(rib}(' Wi)°:'Ne'I(' ) = b.vrr)eI:•: . (18a) c;#(t)=F'UM'.M(tFl)cJM"(t#), t<t; (23a)

Since the bMO) are constant for r<ro, Eq. (18a)
may be written cJ;((t) '.,

ib*Mv()"o) = b;,(ro)e " u 4V . (18b) t((

Connection with the time-dependent c•..(I) ampli- One can combine Eqs. (22), (23), and (20) to ob-
tudes is achieved by associating t

2 I
iby,(rJM(t)•, t<A±.L (l9b); "my,, •- [

olde it •regt) . Usn Eqs (9) (18b),•=

where t. is the ,U-dependent time at which a clas- f f

sical particle moving along the r.• trajectory x U~..(-ot;)b;,,(-.). (24)
would exit the i<r, region. Using Eqs. (19), (18),
and (6) we find

Equation (24) may be given a simple physical In-

C'r~j4Qj) = c..~l)x)( !20)~( iflr terpretation (see Fig. 4). In order to calculate
c~ut�J P(-I\,. i j. (20) the contribution of the Jth partial wave to the scat-

tering amplitude, one starts a collision at I = - :
Finally, for times I >*j,. we are again in the r >ri with b;-(- -). For - a< 0< t;, collisions mix all
zone. Each r;m trajectory created for r < rr now . states along an average common trajectory and
continues into the r>ro region without further this mixing is represented by U'.,,•t-,t;). For
splitting. Thus, each trajectory can be labeled by i t; < It <t',, the adiabatic states are not mixed by
its Af value in the r < i region. For t > t*, (i.e.,, the collisions and one evaluates elastic scattering
r > rY) there is again coupling of the b.,,(r) along phase shifts along each trajectory. Finally, the
each trajectory. Defining states are again mixed along each of the final

, t>t m (21)1 trajectories as represented byU;m •oV (recall
c )=ib~(r,.(t)), >(2) that the superscript .1' labels the trajectory in

where )rU,(t) is the extension of the trajectory the adiabatic region). The time-evolution opera-
associated withM=,I' in tile r <ro region, one tors describe the mixing and shifting of atomic
finds that c" obeys equations analogous to (16) substates as the atoms move along classical tra-
and (17). The final value for b.V(oo) is given by a jectories. Th.e spatial coordinates have been
sum over all trajectories, i.e., changed from quantum-mechanical variables Into

time-depender.t parameters. However, there sub-
sists in Eq. (24) an exponential phase factor which

attests to the quantum-mechanical character of the
translational motion in the region where r<r0 .

t To get expressions for the time-evolution opera-
tors, one may use Eqs. (23), (16), and (17) to ob-

. ' tain

"" r'* I U.. ,It) Br I,o dt ,,m(W ).I t. (t.-,,t),. t < >t; ( 5a

FIG. 4. An atom in a superosition state enters the U WWI(t, t) , t) >Ap
Interaction region with an inrpact paiameter (J + k)/K.
From time t; to i~, or tn,. no transition occurs be- (25b)
tiveen substates and their respective trajectories may subject to
part from each other. After t* or t*,, a single tra-f ectory starts from the point reached at ( *m or t',. Ul,(t, " ) I , ufV.. JI ,, , g ,(11cJectry sartsfi U Ulm(25



where , is given by Eq. (17) and B"v'..) Is or, collapses, so that I; and i;., may be set to 0
also given by Eq. (17) with r,()t replaced by r*,(:) in Eq. (22) which reduces to
(recall that rnv. indicates the trajectory associated (

'• with theM" helicity state in the adiabatic region). Su=-Us(- -, o)eCp{/1/: , +ll.0)- (28)

An expression for S-matrix elements is obtained where
by substituling Eq. (24) into Eq. (7) and making
a comparison with Eq. (3). ,One finds" U;,( V U )O)U,

4- M (0

St (-• )) t JIM Th's region corresponds to weak (large Impact
*"parameter) collisions.

x exp, (iA" & M! *+2M + 2 ,,) • , (26) This is the farthest point which can be reached
where In the direction of a semiclassical picture under

the approximatior, x << r;. As has already been
noted In Sec. 11, the classical trajectories which

f. m _ 2 - (27a) have been hitherto considered may not be regarded
as actual paths since deflection in direction &,

and , which is described by the scattering amplitude
[Eq. (2)1 Involves contribution from all the impact
parameters (J + 01K.

= [Vv.(rj(T)) -' (r,(r))]dr (27b) The final step of the semiclasslcal approxima-
tion is possible provided NT <<\ N7, It consists in
using the stationary-phase method to calculate

4- J (.,(r,('t)) - VM(rM.(r))Idr. the scattering amplitude (Eq. (2)]. This calcula-
t lion Is performed in Appendix 13. In the simplest

r'7P)>rr . In this case the time interval [',il, case, that of a purely repulsive interaction, one
during which the trajectories pý.rt from one anoth- obtains

I-V
- ( t - K ( -n 1) i 'f Jt , , , , ) 2 , -. (6)e xp, P" + . •f?1, M

S.sio M . V1 '4 f+1%,M .

- , , pe +zae) 0(.. (29)'

where J0 .', Is the angular momentum giving rise 'is actually meaningful, only when collisional ef-
to scattering at &7 for an atom following trajec- fedts on observables are considered. Then seat-
tory .11, in the adiabatic region. This result is tering cross sections instead of scattering ampli-
valid provided that N'q<< /roand Joy>> 1. The tudes are involved. The aim of the next section
former condition allows one to use a stationary- Is to discuss the classical trajectory picture of
phase method, and the latter condition implies depolarizing collisions on the observables which
that validity of Eq. (29) breaks down in the small- are accessible in laser spectroscopy.
angle diffractive region.

As in elastic scattering, the major contribution SET R OSIOS E
In the sum over J comes from specific values of SPECTROSCOPY

•J, linking these values and the scattering direc- bi a gas cell, the quantum-mechanical state of
tion (ep). However, Eq. (24) differs from the atoms within a small domain of position-velocity
usual elastic scattering amplitude in the fact that space around (f,V) is most conveniently described
for a given deflection direction Co. a distinct ir- by the density-matrix elements o.ji, ) where
pact parameter V.),,, + 1)/K is associated with a and a' label internal states. We shall limit the
each intermediate internal substate r". For more discussion to the case where a and a' belong to
general forms of the interaction potential, a rain- the same j level since we are interested in study.
bow angle may be defined and when C, is smaller Ing the effect of depolarizing collisions. The gen-
than it, several values of J are generally involved oral traislsprt equation which determines the col-
In the scattering amplitude for given 0 andM., lisional evolution of density-matrix elements of

Throughout this section mention has been made "active atoms" immersed in a perturber bath is
of classical trajectories. However, this notion given by'



= F _ _7_ mp , ,

d5
-, v ~)~ r,v,t) + f (3Oa

where

and

Iv C"t, 11 v0 ) =,v?.f ,,, f ',.,.•t-6 --V ftSo - V, + )7)(1,, - ,, )V,. X T'"o,,,)f,,ALA, 9d) 130c)
I. iI

where T, Is the relative velocity between active and provides some measure of the effects of de-
atom and perturber, W,(,) is the perturber equi- polarizing collisions in level j. Integrating Eq.
librluin velocity distribution, • = (/ni)(• -pv), (30a) over velocity we find
'N Is the perturber density, and f,0 ',(v,,V,) is the

S a t', e- C1,V, inelastic scattering amplitude. In d ) - E dV.: l)pI- (T, V, , t),

our caie the internal state is labeled by the mag- dtvr ') O,
netic number m and the relevant scattering amoll- (3 2a)
tudes are fm,.(V,',9,,A) where )n and m' are taken where
along a fLxed quantization -axis A. This scattering
amplitude may be expressed as a function of the fd (32b)

Sscattering amplitude in the helicity representa- Vai• =
,. tion bytio byEquation (32a) does not decouple ) and p; however,

SI an approximation that is often made"2 is to neglect
, -, the V dependence of the y's. In effect, one re-
M(3) places y'"(v by

i where 6 ,,, 0O) and 6=j(p 0,.;, 0O) and 7 "= ,I-• "*), (33)
and C are polar angles with respect to A. (33) (

In traditional optical pumping experiments In
which depolarizing collisions are studled,' neither where W'(V) Is the active aioni velocity distribu-

the vapor excitation nor the signal detection Is tion. A good approximation to Eq. (32a) is then
velocity selective. In these experiments, the d t (
broadband excitation creates density-matrLx:
elements pi.(rV,1) in a state of given j and the :i, -",
Intensity of radiation emitted (or absorbed) from
these mm' substates in a given direction and with The v,." describe the (velocity-averaged)
a specific polarization is monitored. With broad- coupling between magnetic sublevels and, as such,
band excitation and detection, the signal is a func- reflect the v'ture of the collisional interaction.
tion of velocity-averaged density -matrix elements Thus the structure of the v.". can provide some

Insight into the collisional process. By combining
fe h Eqs. (33), (32b), k3Ob), and (30c) and performing

p.,. J p,,( ,0,f) some of the integrations, one may obtain2

v> N - -f ....f. d, ,V M,, 1 - .t2

This expression can be written in terms of S-miatrix elements if Eqs.!.t31) and (2) are used for the scat-
tering amplitudes. The resulting equation can be simplified by using the relation Jb•,0 0)

=•.-D'M.,(•1rnU�?•.,(•) and other elementary properties of the 1) matrices. The integrals over 'i11 and
dd0,; can be carried out and, after some cancellation of terms, one is left with
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4- * v - ' ( 1 )1(21J+1)(2,11+l1)(2f+l1) J, ) f ) C ~ J *m-"q m"-"q .11 l M M

- M) f (36)

"where the sum is over all repeated indices (except ). Equation (36) contains the selection rule in -in"=m' -in*' which may also be obtained from symmetry considerations. One can verify that 0, re-

flecting the conservation of probability t •
Using Eq. (26), one can write the dynamical factor ap•pearing In Eq. (36) as

rM#.V . s '. V i of- , t)n•(t,,6.',- -Sx .,S~..,g=6-,.•, - ŽU.# ,,- e;,u •(o, e)p~:~,+o

+-()exp -#"' -" expf- 21(q,,.. 171;.)]. (37)

In writing Eq. (37) we have implicitly used the selection rule IJ -J'j I j which is Imposed by the 3 -j sym-
bols appearing In Eq. (36). Since J >>j, differences between J and J' can be neglected in all but phase fac-
tors. In the previous section it has been shown that the quantum-mechanical aspect of the translational
motion is concentrated in the factors exp[-2i(:1,- . The other factors describe the evolution of In.
ternal substates along classical paths r,(.). Let UJe be the angular momentum for which r.. =r.. in Eq.
(36), the sum over J may be regarded as a sum over the Impact parameter (J+ 0)/1K. in Maalogy with the
classical mechanics calculation. In the region where J >J, [or r,<r$rP 1 a common motion approximation
is valid. Since l -J' 14<J, the phase difference In Eq. (37) can be expanded under the form

• - = -+ (J(-- , ' _ J ' • .r" (38)

wherelaq.,,•aJ can be Identified us the classical deflectioi, angle (see Appendix B). Then, following Eq.
(28) one reduces Eq. (37) tor=4M0 -S -S 4"=iM0OO

•M•,�U� 8 N -S 1-4S•j 1 
6 WW,9,J1NM - , a,+MO)UM.#(- 0, +") *1
x expj• (1'[..H,(r, (I)i +V1•.(r, (t)) -V.,,,(r,{(t)) - V,(r, (I)))dI exp[ -•i(J -J)•] ,(39)

where ( ij,- ,°) have been expanded to lowest This condition is not sufficient to regard

order In the potentials. This expression describes the atoms as wave packets of dimension much
the substate mixing along a single trajectory ri(t). smaller than the Interaction distance. Thus, In

WhenJ<J. [or re>j•rP%), It may be verified that analogy with JWKB calculations of scattering am-
q., -"*.' 1>, 1 and that the factor exp[- 2i(qp.. plitudes, the classical trajectories that we have

-',)] averages to zero by summation over J and mentioned are not really followed by the atoms.
J' for It * lin' I. A classical trajectory ri, may A specific evaluation of 7"'will be given in a
still be assigned to elements of-the density matrix future work.
which are diagonal (in the helicity representation) Velocity selecthe 13ser spectroscopy
on entering the region r< re but the classical pic-
lure falls for nondiagonal elemen.s. In other .i In velocity selective laser spectroscopy, the
•words at r =rY the magnetic substate populations relevant quantity which describes collisional ef-

are scattered along separate trajectories fects Is the collision kernel I'"(•',•). Calcula- J
ri, but the coherence between substates is lost tion of this kernel from Eqs. (30c) and (31) re-
owing to trajectory separation. r 'ter the depar- quires the knowledge of products of differential
lure from the region r<ro, substa.,a mixing starts scattering amplitudes of the form
again along each separate trajectory. In some .(v,,,)/ he(\,, v,).
sense the Images given in Figs. 2(a) and 2(b) are
valid when the interatomic distance r is. respec- The stringent condition ,r~x<< is needed to ob-
lively, larger or smaller than re. To work out tain a semiclassical approximation of this quan-
this semiclassical picture, the only needed con- tity. We consider still the simple case of purely
dition on the de Broglie wavelength has been repulsive interaction for which a semiclassical



scattering amplitude has been calculated (Eq. 29).
Since Eq. (29) is valid only if J,2 o >> 1, a supple -
mentary assumption is needed to take into account
small-angle scattering. We suppose that the width
"of p.,,0(?.Tt0 in velocity space is much larger
than the velocity change which corresponds to the I
deflection angle defined by.J, 0 -=1. Thus, the_ AJsb I /
collisional transport equation may be written Al

dl . FIG. 5. The scattering of 2-substate atoms at angle
0 results from the contribution of two trajectories: the
one which enters the r < ro region in substate 1 at im-

0 f.-•,• tjd -PMMO11 ) 0pact parameter (Jn + ?" (I) and the one which enters the:
"Ur< re region in substato 2 at Impact parameter (JA,

+ J)/K (I). Along each trajectory mLxitlg between sub-
+ ) ~'~'~ P"*M~e? r states occurs for r <ro. The trajectories ef substate 2

"., . in I and substate 1 In II would lead to scattering at an
(40) angle other than 0 and are, therefore, not continued in-

where'""" ' "to the r < ro region.
,where li,•,1"W' describes collisions which are
such that J,,, 0 > 1 and l1'• (v',\') describes the
remaining very small-angle collisions. The first
tvo terms may be calculated in the same wy as As above, two collision regions may be distin-

', . guished depending on whether J.. is larger or
The semiclassical approximation of scattering smaller than Jo. When J., >J0, a single trajectory

amplitudes Is needed to determine IV.,"",#). Is available and one obtains

• PM . !0)f I ' U'MO o (o

RN, sineO A U, •

x expt.Jl dt[V..,,,(r,)jt))- V.v-(r.,,Y))+ Vm.(r,,(t)) - V.,r(t

x ep j(_or' -al + Av - wl')! (41)

for use In Eqs. (30c) and (31). This result contains the product of a semiclassical elastic differential scat-
tering cross section by a factor which accounts for the AIM' transitions along this trajectory.

When J.v>J,, distinct trajectot ies corresponding to distinct substates may contribute to scattering at
epand

.1 -si a it'- , t j
* hl ht - •" -o• I

x exp[- • ( .•,, , 'e'nxA.,,)1exp[- i(A" - A' -Do" + 31) • +i(. -AIip

X Jo.aP...Ja/ 2 exp[2iOije .,,_ l -J0.. )eJ. (42)

The last factor In Ea. (42) represents Interference M',Mp)...(V')d3t', the integral over v, averages
effects between diverging trajectories. Its angu- to zero for terms with In I* In' I provided (gim)u
lar dependence Is given by IJb,, -J,).. is much smaller than the width of

ddee p.,•,() in velocity space, where u is the active-
d[(2hl/ea.'-� ,oi) -(Je J0,4fl=J4 -Jol., atom mean speed.

o(43) The net effect .of scattering in direction t&p for
(3 a two-level system in tis imit is shown in Fig.

This angular dependence leads to oscillations of 5. The angular momenta .1o0 (i = 1, 2) correspond
V) as a function of V and V'. In f1 ','4 to scattering of an atom in state i through the



IP angle Op. For r >re the substates are mixed by we have shown that single-trajectory approxima-• the collisional interaction along each o. the two tion and adiabatic approximation can be combined

trajectories I and I. For r< r, the two states in to obtain a generally valid expression for the
each of trajectories I and II are split by the col- semiclassical phase shifts (provided-X << r). An
lislonal interaction, but only one trajectory in explicit calculation of this phase shift has been
each leads to scattering at (&A). Finally, the outlined in the simple case of a continuously de-
states in a given trajectory ,re again mixed for creasing difference of the substate dependent in-
rý,rr. The internal final state is a combination teratomic potentials. The conditions of validity
of internal states which have experienced the his- for.using a semiclassical scattering amplitude
tory shown In Fig. 5. When the above conditions have been examined and the case of a purely re-
are not fulfilled, no simple picture can be given. pulsive interaction has been treated in some de-
It should be noticed that the phase factor In Eq. tall. Using semiclassical approximations to the
(42) cannot be clearly separated into a "spatial scattering amplitudes, we investigated the nature
phase shift" which would represent interference of the depolarization collision kernels and ratesV. effects between diverging trajectories, and an which enter into laser spectroscopic experiments.
"internal phase shift" which results from internal For these two quantities a picture of the scatter-
substate mLxing and which is present along a corn- ing, In terms of classical trajectories, has been
mon classical trajectory. given. In a forthcoming paper, expressions that

Thus, the methods used to calculate and we have obtained will be used in a numerical cal-
are perfectly consistent with the culation of the corresponding signal profiles which

JWKB and classical trajectory approximations, could be observed In laser spectroscopic expert-
respectively, that are used to calculate total and meats.
cdifferential scattering cross sections. Assuming
X < r, the result for can be Interpreted In ACKNOWLEDGMENTS
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tion of collision cross sections). Under the more APPENDIXA: DERIVATION OFTIlE RADIAL
stringent condition 'X<< r.7, the derived expres- EQUATION"7

sion for the kernel V) can be interpreted
as arising from collisions having the appropriate A convenient set of commuting observables in
Impact parameter to give rise to classical scat- the center-of-mass frame consists of the Hamll-
tering at 69. There may be a number of such Im- tonlan )/, jf, and the total angular-momentum
pact parameters reflecting the different Inter- operators J",J,, where J, is taken along a labora-
action potentials for the various magnetic sub- tory fixed axis of quantization Oz. The corre-
states. . sponding eigenfunctions are 4, I (f.) where Al

S We have not attempted to give an Interpretation Is an eigenvalue of J, and b denotes the ensemble
to V,(•',•) under the less restrictive semi- of electronic coordinates of the colliding atoms.
classical condition x<<r.-; in this limit the large The total Hamiltonian 11 is

t number of partial waves contributing to each scat-
tering amplitude leads to a very complicated ex- I H=t110)+ + Mr, P
pression when bilinear products of the scattering
amplitudes are taken to form the collision kernel, where i4(') is the internal Hamiltonian, V(7,p)
Only when total cross sections, such as those is the interatomic potential, and
represented by are evaluated does one re- at (J2+12- 0 --J)
gain a result with a simple physical interpretation. P== -W- + 2 n.j)*

8 r2
V. SUMMARY I The Hamiltonian, without internuclear motion, Is

In view of understanding the signal formation in ie = BOW) " + V(V A)
laser spectroscopic experiments when depolariz-
ing collisions are present, we have developed a Its elgenfunctions are of,(r,ý) where Al' Is the
semiclassical theory of these collisions. First simultaneous eigenvalue of J,, and j,, along the
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rotating axis of quantization F. The expansion of equation is determined by the asymptotic form of

F,'(?, ) in terms of oV(rj), and the wave func- a scattered plane wave which is

tion ¢'i.(r)describing the scattering is" ¶. ,

.. r f- 7 where piv(ý) is the electronic wave function as-

where M~ is the rotation which brings ? along Oz. wee~ ~ steeetoi aefnto s
whoe sbstitut thisepression hinto the acrding r O. suming that the quantization axis is along R, and
We substitute this expression Into the Schri~dinger f,(,' istesateigapitd nte eiiy •

equation~ is the scattering amplitude in the helicity

equzation .representation. The connection between •(•)

•'•JJ'f,(?, •)l= iJJJ(,), and b) Is

where K Is the magnitude of the relative motion (6)04 '

wave vector. Projection on q4'(r,P) leads to the

radial equation Expansion of the plane -wave function In terms of

ht P d 1K2 
spherical harmonics leads to

-(211)(2J 
- '-

=-~~~~~ I•.,,vw•,r(0 J, I• J'

w here 
.

M - M ) \-

Summing over I and using Eq. (2) one finally ob-

(r)++1) 2,11+(1 +1), e, talnis

- [.\.(J. ,4w)X.(, Af)8M,,., z, (2J. + )[- (-I)-";6,,.Me"• •,emmf ]
+ 

IM

\,,(J, Ar) = J(JU + I) -sIi'(.J' + i)]'t/ and Vv(r) is

the value of the Interatomic potential in substate Since *, =y.,v,4I(io), we see that the asymp-

Al. In the diagonal term, the contributions which totic form of the radial wave function Is"

ontain~ and i(j + 1) - 2.11f may be neglected as

they are of the order of-9/r,. ,i)

The boundary-value condition which is necessary

to select the appropriate solution of the radial X [6..xge" - (- I)''S~~e"'1.I ,

APPENDIX B: STATIONARY-PHASE
CALCULATION

The needed approximation for : 0.(•, 0,0) for large J values is given by Brussaard and Tolhoek23

)I (O,eO,0(lsinek(6 sn( i-Afr +IVUM,.(0).(I

where

t(0) =[J2 - (Of +A12 - 2,11'111 coso)/sin2 0 12  (12)

and

WI.(O) =J cosT[(J 2 coso6 -AI.%')/(J
2 - Aff2)'1 (J2 - .11,2t)/12

-A• cos"'(Afcoso - Ml')/sin o(J2 - ,Af),P] - M' cosl(Af' cosO- M)/sinO(J 2 - .11)'l21. (13)
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This approxi mation is valid provided l >'-,.(6)>> 1. *lWMM.(&)l-0 which leads to
This expression is substituted into Eq. (2). The _ J_ o-___
sum of the term involving 6*h , vanishes17 and one 2-- cos- C Mo' (1B6)

Is left with

f M(2J (). , " 1 or, when Al<<J,rMM('9) 2iK M (2M)S.if(~o0, 61 _,2 At.",)f,•

,!. ~ ~~~(B4) " = * ,•" -'-"• .BT!

The classical deflection angle G Is defined by

where S', Is to be given by Eq. (26). The quanti-
ties U-1 (, ,,) and exp(ia-l"), appearing In Eq. e 2

(26) are slowly varying functions of J with respect e d(/
to exp(2h,,.,.). Thus, they can be taken out of where dn, 2v/dJ satisfies Eq. (B1) to first order
the sum over J and evaluated at a point of maxi-
mum contribution to the sum. One may use themay

stationary-phase method to calculate satisfy Eq. (b8). We restrict now.our calculation
to the single case of a purely repulsive potential.
Then 0=0 and the semiclassical scattering -m-

fdJexp(201i,v. 1 (B5) plitude may be evaluated from Eqs. (B4), (22),
and (Bi) using the method of stationary phase.

The stationary-phase condition is d/dJ[2qj,2f One obtains

.4j~
f'M~q9)K(sing)" 12

X exp i! -i(Ill +If)!-ij.,• Oexp(-tMN). (B9)

This expression is bound to the validity of the IJMo sino > 1 (B1I)

stationary-phase approximation which requires The points of stationary phase for channels M
that and M' are well separated provided that

NOe/ A \ ' 0" liJme -JM,0l >> (a 0/8 J)"1/2. (M1)

z 5j00 The fulfillment of this condition implies that the

This condition generally reduces to V`K<< 4vr. One wave packets in channels .1! and If' do not over-

has to also take account of the condition of valid- lap. When condition (B12) is not fulfilled the dis-

Ity of the approximation used for n1,,(0, 0, 0). To tinct wave packets coalesce into a single one, but
first order in M/J the approximation demands Eq. (B9) is still valid, since Eq. (B18 still has

that a single solution for a given value of At*.
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A radistively assisted inelastic collision (RAIC) is one in which two atoms collide in the presence of a radiation
field to produce a reaction of the form A* + B + 40 --+A + B*. In this paper, a general theory of RAIC is
developed with special attention given to the final-state coherence, produced by RAIC. These final.state coherences
can be monitored by standard experimental techniques (polarization of fluorescence, quantum beats), enabling one
to use sich studies to gain information on the interatomic potentials that are relevant to the RAIC under
consideration.

I. INTRODUCTION which include magnetic degeneracy effects in RAIC
and in the related problem of collisionally assisted

There has been considerable recent interest in radiative excitation (CARE). However, these cal-
reactions of the form culations were restricted to specific J values for

the various levels and to specific forms for the
interatomic potentials; moreover, only total cross

in which two atoms (A and A') undergo a collision sections were obtained.
while simultaneously absorbing a photon of energy A more global picture of the collisional process
gnf from an external radiation field to take the is achieved if levels of arbitrary J and interatomic
atoms from some initial state At A'. to a final state potentials of a quite general nature are considered.
AA~.. In many cases, the direct transition A, The calculations, including an averaging over dif-
+A', - A, +A;. is energetically forbidden; conse- ferent collision orientations, are conveniently
quently, the transition can take place only in the carried out using techniques involving irreducible
presence of the radiation field, with the photon tensor operators. The final-state coherence re-
providing the energy mismatch (E, + Et.) - (El sulting from RAIC can then be interpreted in terms
+E,.).' Such processes have been referred to as of the symmetry properties of the interatomic po-
radiative collisionst (RC), laser-induced colli- tential and the characteristic properties (polariza-
sional energy transfer3 (LICET), or radiatively tion, frequency, intensity) of the external light
assisted inelastic collisions4 (RAIC) and have been field participating in the RAIC reaction.
the subject of a large number of theoretical 5 and a A general formalism for RAIC is given in this
lesser number of experimental" investigations, paper. The physical system is described in Sec.
By studying the RAIC cross section as a function II, the equations of motion are given in See. RI
of frequency fn, one can gain important informa- (and derived in Appendix A), and a formal solution
tion about the iniial- and final-state AA' inter- is obtained in Sec. TV. A discussion of the results
atomic potentials. is given in Sec. V. In Appendix B, I present a

Typically, the RAIC cross section can be mea- diagrammatic interpretation of the operators that
sured by monitoring the fluorescence from one of appear in the equations of motion.
the final states (Al., for example) since the total Solutions of the RAIC equations in the limit
RAIC cross section can be simply related to the where the external field is weak and the collision-
total fluorescence rate. It is apparent, however, induced level shifts of the atomic energy levels
that additional information is contained in the can be neglected will be presented in a following
polarization of the fluorescence, i.e., in the co- paper. In future work, solutions of the RAIC equa-
herence properties of the final states. It is the tions will be sought that are valid for arbitrary
purpose of this paper to present a general theory field streiigths and include level-shifting effects.
of RAIC which allows one to calculate the final-
state coherence properties as well as the total
RAIC cross section. Experimentally, the final- II. PHYSICAL SYSTEM
state coherence can be probed by standard methods The physical system consists of a low density
(absorption, emission, or quantum beats origi- (i several hundred Torr) atomic vapor conta:ning
nating from one of the final states), two types of atoms, A and A', to which a light

A few calculations' 8 have already appeared pulse is applied. The atomic energy levels 'or
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atoms A and A' are shown in Fig. 1. Levels of
atom A are designated by unprimed variables andI
those of atom A' by primed ones. It is assumed
that the levels of each atom can be separated into +
subgroups of levels (see Fig. 1), with the energy
separation between sublevels in a given group 0

having soeuprbound MOc,, (to be established
below). Specifically, the sublevels within a group
are generally different fine structure, hyperfine T
structure, or Zeeman sublevels of a given elec-
tronic state. The atoms are prepared in a linear
superposition of states jli'), where i and i' repre-
sent any of the sublevels in the i and i' groups, re-
spectively. FIG. 2. Field-pulse envelope as a function of time. A

The light pulse is taken to be of the form collision occurs, centered in time at t-.t,, with a dura-
E(i, t)=•[I(R, t)e-fQ#+ C, t)*e'n#] (2) ilonr, << T,

where the envelope function I §(R, t) I is character- parameter and v, the relative atomic speed as-
ized by a duration T and a maximum amplitude sociated with the collision. Collision durations
I 80 (Fig. 2). It is assumed that the pulse envelope are on the order of 10-12 eec so that it Is rea-

varies very slowly in an optical period (nT>> 1) sonable to assume that
and that the frequency fn is very far detuned from
"any transition frequency in atom A or in atom A'. <T, (4)
On the other hand, the field is assumed to be in since pulse durations T - 1.0 nsec are typical.
near resonance with the transition in the composite Thus, excitation occurs on the time Icale r,; on
AA' system from some initial state Iii) to a final this time scale, the field amplitude 8 (R, t) ijes-
state Iff). In other words sentially constant and may be evaluated as 8(R*, tQ)

Ift ,,+El,- (Et +Ed, (3) (Fig. 2). In calculating excitation probabilities,
it is generally necessary to average over all poo-

where E, is the energy of a given level a. sible t, and R, during the light pulse and to aver-
Thus, the field can induce transitions only in age over all collision impact parameters, orienta-

the composite system AA', implying that excita- tions, and relative speeds. The average over R,
tion can occur only if there is an A - A' collision is equivalent to an average over the spatial pro-
during the on-time of the light pulse. Let us sup- file of the ligU pulse.
pose that such a collision occurs, centered at time The following assumptions are adopted: (1)
t= t,, position R = R,, and is characterized by a Collisional excitation exchange between atoms A
collision duration T,=b/v, where b is the impact and A' does not occur in the absence of the light

field (i.e., all such exchange processes are as-
sumed to be nonresonant). (2) The frequency wB

- is chosen such that

Sw.• r << I«, (5)

ensuring that all sublevels in a given group are,
_ • }#°in effect, degenerate during a collision. (3) There

.. _ is no population decay or buildup of Doppler phase

during a collision; that is,
•,T, <<I, kuT, << 1, (6)

where , is a decay rate associated with the initial
• { = • ),.. or final states, k is a wave vector associated with

A A' the field, and u is an atomic speed. (4) Each atom
. 1. E undergoes, at most, one collision, on average,

consideration. The groups of levels represented by a duigtepleimTnaigoetogor
single letter are degenerate or near degenerate, with a multiple- collision effects [valid for densities
maximum frequency separation wE such that wjT << 1 <<I0 atoms/cm T (nsec)]. (5) The collision
(Tefduration of a collision). The field frequency fl is trajectory is treated classically, which implies
such that A n E, + Et. - (El + Elo). that the change in kinetic energy resulting from
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RAIC is small, i.e., that frame, a collision is characterized by an impact

+ . - nIT. S 1, (7) parameter b, relative speed v-= I-' I (v and v'
being, respectively, the velocities of atoms A and

where A'), and orientation e relative to the fixed frame.
waf W=O- (ai, CO =E1ft4. (7a) The Hamiltonianufor the RAIC can be written

If condition (7) were not satisfied, one could not H(t; b, v,, e, R0, t0)=H 0() +H(-')
"assigh a unique classical trajectory to the colli- - .(• + i'). , t0)e-"' + c.c.]
sion.

To summarize, I am considering the radiatively +'U(-,', •t(t)), (8)
assisted collisional reaction where H/ and H0 are the free-atom Hamiltonians

At +Al.+ A - A, +AP for atoms A and A', respectively, t' and A' are

from initial states jIHI) to f inal states if'), in the dipole-moment operators for atoms A and A',
which the photon is provided by an electromag- respectively (the atom-field interaction Is treated

netic pulse. Several assumptions relating to the in the dipole approximation), and 'U is the A-A'

time scales in the problem have been made which interaction Hamiltonian. The collision is centered
are valid for many systems of practical interest. in time at t= t, and R. is the position of the center

a ti ninal-stae coherence is con- of mass of the atoms when t= t,. All effects of
tald inf atio oensy tatomic motion are contained implicitly in the inter-
Taned in the density matrix fonrlowing the RAtC. atomic separation f(t), calculated for a classicalThe final-state density matrix for one of the atoms t

can be obtained by taking the trace of the final-state trajectory. In writing the approximate Hamiltonian
density matrix for the composite system over the (8), conditions (4), (6), and (7) were used.

eother atom. Experi- According to the assumptions of Sec. II, statesfinal-state variables of the ote tm xei i•can be coupled only to states Iilii) (i1 is

mentally, it in generally such a single-particle an se i oup ) or to states 1ff') The
density matrix that Is monitored (e.g., by fluo- another state in the i group) or to states Vff 1. The
redcence from the final state of one of the atoms). corresponding equations of motion for the probabil-

ity amplitudes a,,. (t), a,,. (t) (in the interaction

representation), as derived in Appendix A starting
DI. EQUATIONS OF MOTION from the Schr~dinger equation with the Hamiltonian

By assumption, the collision trajectory is treated (8), are given by
classically. That is, relative to a fixed laboratory

1
.i.

+ ye' T^U ;t b, 4,8, k, t.) Vnga)t

+~u = • (W' ji (J';t, b, v,, O, ,, t,) if eala, r(

(if' I tWi'. ff'; t, b, vuO, k*, t.) lji)e"Wa il , , (9b)

where the detuning A is defined by

f, - (Wit +W1,l.),- (10)

and the operators 9 and t are defined below.
The operator S(aa'; t,b,v ,,e,^,,t,) is an operator that acts only in the aa, subspace (a'= ii' orif');

it shifts and couples levels within that subspace. Explicitly (see Appendix A),

'(4-a1;t,b v-' , .,t.) = 91, + s.,)
41 + +W + (aa)

•, =- V•.D I O(I(t)) 19(-• •R(t))(1b
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.*here

(12)

The opeirator s may appear to be complicated, but it has a well-known physical interpretation. The term
SL invblvbsonly field variables and gives-rise to the shifting (light shifts) and coupling of aa' levels pro-
duced by an off-r'esonant external electromagnetic field. The summation over intermediate states 013'
represents the virtual excitation of these levels by the field. The term S0 (Eq. (UIb)] involves only colli-
sion variables and-gives rise to collisionally induced shifting and coupling of levels in the aa' group. The
shift of the levels is the origin of the pressure broadening and shifting of spectral lines, while the coupling
within the aa' group leads to collisionally induced relaxation of any alignment, orientation, etc., that may
be present in that group of levels. Again one finds a summation over an infinite number of virtual excita-
tions

The transition operator I' that couples groups of states Iii) to Iff' is given by (see Appendix A)

T(lf'; t, bv,,), e , t,)--- [ +.( t*) (13)2Fe fi + Waf + a +Waft*

and represents the combined effect of the (field + collision) in producing the transition from initial to final
states. The corresponding transition operator which coliples states If') to Io') is given by'

T if' it; tob, v, %R.,tQ)=-• A1• +,• , + 8 ( V,,,14
2N~* fV WSJ + Wat WSJ~ a

Note that the matrix elements of T appearing in IV. FORMAL SOLUTION
Eq. (9) are related by It is useful to make use of Eq. (15) and to re-

(l I t(if',tii'; t) Vfý)=(ff' I T(tl',ff'; t) Iii'}). write Eqs. (9) in matrix form as
S(15) it= S(1, t)a, + [ T(IF, t)] ei&,, (18a)

A diagrammatic interpretation of 9 and T is given i*.,= S(F, t), + T(LF, t)e4%, (18b)
in Appendix B.

To obtain the RAIC excitation probability, one i(tn)* 0, a,(t;)=0, (18c)
must solve Eqs. (9) for at,. (ti) subject to the Ini- where ; ($,) is a vector containing all possible
tial conditions states Iii') (V1f')) in the initial (final) group of

a,,1 (t;)*0, a 1.-(;)=0, (16) levels and S(1, t), S(F, t), and T(IF, t) are matrix

where t'(t;) are times before (after) the collision, representations of the corresponding operators ap-

Since 7. << T [ Eq. (4) or Fig. 21, the times t1 can pearing in Eqs. (9). A solution of the form

be set equal to *oo when integrating Eqs. (9) with- i(t)=G,(t, t;)A(t), K=I,F (19)
out introducing significant error, is sought, where the matrix Gx(t,t') is chosen to

The validity conditions for Eqs. (9) are discussed satisfy the equations
In detail in Appendix A. If

.r>> 1, (17) iG,(t, to) = S(K, t)G(t, t), (20a)Dt
where a is any of the frequency denominators ap- Gx(t,t)=1, K=1,F (20b)
pearing in the operators I and 9, and if Eqs. (3)-
(7) are satisfied, then Eqs. (9) are valid over a and the symbols I and F represent the entire ii'
wide range of field strengths.10 Condition (17) and ff' subspaces, respectively. Substituting Eqs.
ensures that the intermediate states act only as (19) and (20) into Eqs. (18) and making use of the
virtual levels in the RAIC problem. The virtual relations
excitations are represented by the summations (Gr(t, t1))-1 = Gr(t, t),
over hand P1 in the S and T operators, and the (21)
problem is reduced to an effective two groups of Gr(t, t,)Gz(t,, ta) =G(t, t2),
levels problem for the stateb Iii') and If). It which follow directly from Eqs. (19) and (20), one
should be noted that Eqs. (9) reduce to the corre- obtains
sponding equations derived by other authors in
various limiting cases.6  iI A, = G,(t;, t)(T(qF, t))'G,(t, t ;)e10tX,, (22a)

-N!$
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f 4=G,(t;, t)T(IF, t)G,(t, t;)e-'%, (22b) may be constructed (the tilde is a reminder that
t('results are expressed in the interaction representa-

(22c tion). The (complex) rate at which RAIC create

In this form, all effects of shifting and coupling density matrix elements p 1 ,;r11j(t; ;v,, t,) at time
within the iil and ff I subspaces are contained in t, during the light pulse for atoms A and A' having

withn te i' ad f' sbspaes re ontine in relative speed v, starting from an initial density
the matrices G,(t, t') and G,(t, t'), respectively, matrivelemed .s g in by

Once a solution to Eqs. (22) is found, final-state matrix element p1 ,;.d~.(t;) is given by
density matrix elements of the form

SPff~tli~to';b, v,,(), R.,t)

= *t t )[ a ,,,, o)]

= [ Gt,(*, t ;)A-, (to*)] G. Gj,(t.*, t-,)Ft•]•.

(23)

r,;(v, v,,t.) =a•Av.,V 2v, b db A f(8rd f•. d[)(tjb,Vd, ,R.,t) (24)

where 91, is the a-atom density (assumed to be where T-(T*) indicates a time just before (after)
independent of position) and the shorthand notation the pulse. One can then monitor the final-state

density matrix via absorption or emission experi-
, , ,I =f , 5 ments to obtain values for the various rates P•I

etc., has been adopted. The integral over H, in For longer pulse times T, it may be necessary to
Eq. (24) in limited to the interaction region of the integrate Eq. (26) to obtain the net effect of the
atoms and light field; It is essentially an Integra- light pulse.
tion over the spatial profile of the light beam. To be consistent with other authors, I define a

Thus, during the light pulse, the density matrix RAIC transfer rate per pulse from some initial
evolves as state described by Al to a final state described

jrgV ', U(. by p,,1 as

+ 4.v', () , (26) ' T (v,, t,)dt (

where ,= - •'. The assumption that an atom and a RAIC transfer cross section per pulse by

undergoes at most one collision during the light c 1v r",, f ",,)
pulse is contained implicitly in Eq. (26), other- r ti) = ,,1 (v•,, f d .), (29)

wise, terms such as where the H. integration is over the interaction

•',•Pp volume.12 The rate and cross section for transferwould be present. The term with X(t,) represents of population from some initial state 11) to a finalstate IF) is obtained by setting 11=I, F1 = F in
changes produced by processes other than RAIC Eqs. (28) and (29). Finally, one can define an
(i.e., level decay, other external fields, etc.).11  aeqs. (28) and ( nalyonecain an
It is an equation of the form (26) plus a corre-
sponding equation for times when the light pulse is Thy) 1 - V•(v•), (I0a)
off which must be solved in order to make connec-
tion with a given experimental situation (of course, - 1
there are no RAIC terms in the equations with the o(,,) =- of,.(v,), ($0b)
field off). For example, if the pulse time T is a "3

short enough so tMfat the bracketed term in Eq. where N, is the number of initial states. Equation
(26) may be neglected, then the final-state density (30b) defines a quantity that has been typically
matrix following the light pulse is simply referred to as the RAIC cross section.6

5pl,;, ', T) 41 '1 (v, t)d V. DISCUSSION

In general, it is difficult to obtain soluvions to
S (,, T- (27) Eqs. (22) and perform the necessary averagng
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over collision orientations. However, certain gen- be integrated directly after setting A (t)=i,(t-).
eral features of the solutions may be understood by Using Eqs. (22), (19), and (21), one may obtain
ex.r.mining some of the limiting forms of these
equations. ;, (tr*) = (io , f Gp (t,', t')T(IF, t')

A. Nondegenerate levels x G,(t', t;)e-•s,(t;)dt'.

In this limit, the matrices S and T in Eqs. (18) (34)

become scalars. Equation (20) is easily integrated To be consistent with the perturbation-theory
and one finds that Eqs. (22) take the form limit, the contributions to G, and G, arising from

MAI = T(IF, t* exp~i( At - (p0 (t)] IA,, , (31a) the light-shift operator should be neglected. Equa-
tion (34) may be given a simple interpretation.

iNAp= T(IF, t) exp{- i[&t- (p,(t)]}A,, (31b) Starting in the state represented by a,(t;), one has

where a mixing and shifting of the initial levels from time
t=t; to time t=t' (represented by G(t', t,)], a

= S(F, t') - S(1, t')]dt' (32) transition from initial to final state at time t= t'
( represented by T(IF, t')] and a mixing and shifting
of final-state levels from time t= t' to time t = t.and I and F are nondegenerate states. The phase [ represented by G,(t'e, t')] ; an integration over all

q(P(t) contains the effects of the level shifts pro-

duced by the off-resonant light field and the colli- possible t' is Included. Thus, it appears that re-

sional interaction. Equations (31) have been orientation effects in the initial and final states

studied by many authors using a variety of ana- are correlated with both the shifting of ihese

lytical and numerical techniques. 5'"3 The resulting ". .s and the changes that occur in the I- F tran-

RAIC rofile exhibits a marked asymmetry for sition. In particular, if there are times at which

large T" I, resulting from the action of the level- instantaneous resonances occur for a given de-

shifting term. For one sign of A, the I-F transi- tuning I&A 1,Z 1, the T matrix can be evaluated at

tion can be brought into instantaneous resonance such times and the integral (34) evaluated by a

with the field during a collision, leading to en- stationary-phase method. This condition can help

hanced excitation; for the other sign of A, no such to simplify the calculations, although the average
instantaneous resonance is possible. Equations over collision orientations can still pose con-instntaeou resnane I posibl. Euatons siderable problems. Experimentally, one should
(31) also contains saturation effects which can ap- erbe po Experimn taly oneo
pear for large field strengths or small impact pa- expect to find a variation-of final-state coherence
rameters. as a function of detuning.

B. Perturbation.theory limit C. Perturbation theory neglecting level shifts

By neglecting the level-shifting terms in Eqs. Additional simplifications of Eq. (34) are pos-
(22) and taking A = 0, one can estimate that a sible for a range of impact parameters if one
perturbation solution Is valid provided limits the detuning to the impact core of the RAIC

profile (IaIT,< 1). If IAIT.<<1, the effects of
t X <<1 (33) instantaneous resonances are not important, since

the phase factor exp(iAt) is slowly varying; all
where 91(t=t,) is the interatomic potential at the times t' in the range (t;,t,*) contribute to the in-
time of closest approach, T, = b/v, is the collision tegral in Eq. (34). Since the matrix S is quadratic
time, X is a Rabi frequency (eg., X=(01' It' 1f')16I/ in the collision interaction potential while the T
211), and @ is some characteristic frequency de- matrix is linear in it, there exists a range of
nominator appearing in the transition operator T impact parameters where one can neglect the
[Eq. (13)]. For nonzero A, Eq. (33) is replaced collisional contributions to S. Contributions to S
by a less severe condition. Since I'U(t= t.) I./ from the light field have already been neglected
a1 in the range of impact parameters that con- owing to the perturbation-theory limit. Thus, in
tributes to excitation,"4 the perturbation theory this limit where all level shifting and mixing in
fails for field sttengths X Z U. Regardless of field the initial and final states are ignored, 8(1, t)
strength, inequality (33) always fails to hold for = S(F, t) = 0 and, G,(t, t') = Gp(t, t') = 1. Equation
sufficiently small impact parameters ['U(t= t,) (34) reduces to
varies typically as b" ]; this domain can be
treated by using a cutoff procedure. a(t.*) (ini-) 1  dt' T(IF, t')e-i& :(t;). (35)

In the perturbation-theory limit, Eq. (22b) can 'a
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bppearslinearly in Eq. (23) and(24), thnseqver g o gratefully acknowledged. I should also like tobilinearly in F-xS. (23) and (24), the averaging over a k o l d ef n nJ l s p o tf o h ub i h
collision orientations is easily performed using acknowledge financial support from the Fulbryght
techniques involving irreducible tensor operators. Foundation. This research was also supported by
One can show that the collsion produces the same t
type of final-state coherence properties that would
be produced by replacing the collision by an un- APPENDLXA

polarized field having the same multipolar proper- In this appendix, starting from the Hamiltonian
ties as the collision operator (e.g., a dipole colli- (8) and using the assumptions of Sec. II, I derive
sion operator is replaced by an unpolarized elec- Eqs. (9). The wave vector is written as
tric field). This result is not difficult to under- (t(t)) =• a•(t)e'-"mIM), (Al)
stand. Excitation is produced in a single collision; ()

when averaged over all collision orientations, the where
net effect is similar to that produced by an un- M)-= Imnm')= Irn)Ir')',
polarized field of the corresponding multipolarity.

It is relatively easy in this case to predict the and (w, + w .a,
final-state coherence properties for various polar- and (w, and Wm1) and (jraY and Im')') are eigen-
izations of the external field. The final-state co- frequencies and eigenkets of free atoms A and A',
herence may be observed by monitoring the po- respectively (i.e., eigenfrequencies and eigenkets
larization of fluorescence or the quantum beats of the Hamiltonians 14(r) and H[(r'), respectively,
originating from one of the final states, appearing in Eq. (8)]. 1 adopt the notation that a

captial Roman letter represents a composite state
of the AA' system [e.g., 11)= Iii'), W'1 =(,/ +wt;,D. General cae etc.]. Using Schrbdinger's equation with the

If perturbation theory fails (power densities Hamiltonian (8), one can derive the following equa-

Z 1010 W/cmr), the solutions of Eqs. (22) exhibit tion for the probability amplitude (in the interac-

saturation effects. Unless a way can be found to tion representation) aw(t):
perform the averaging over collision orientations iKe ={- MI[ ArIB). -[e'-60 + -*e'* 0 1
and beam intensity profiles, one is faced with the + (MlIt(t) B)Ie"Imalas, (A2)
costly task of integrating Eqs. (22) numerically as
a function of collision orientation 0 and field am- where ýr=r + jý', w)a= wv - u) , and the summa-
plitude 8(A,, tQ). There has been limited work in tion convention is used.
this area, although a few related calculations have According to the assumptions of Sec. II, the
appeared.' only states that are significnatly coupled are

A general formalism for calculating the final- I1) and I F). However, this coupling does not yet
state coherences produced by radiatively-assisted appear directly in Eq. (A2) since the I-F coupling
inelastic collisions has been given. In the following is via virtual intermediate states. To see the
paper, the RAIC transfer cross section is cal- coupling directly, one writes Eq. (A2) for hi,, re-
culated in the perturbation-theory limit, neglecting placing the a8 which appears on the right-hand side
level-shifting effects. In future work, it is hoped of this equation by the value obtained by formally
that the more general problem will be addressed, integrating Eq. (A2) for a. In this way, one finds

itfA.= e'",st [- 1(Fl ;rlB).- (Se"•nt + 84008*) +<Fl%(t) JB>]

x(a(tn)+t(i:)-: ' dtl'+. e'aw'l+('L[(t) M)la,(t')j . (A:)

The term proportional to a8 (t) can be neglected are
using the assumption that the field and collision •, >1 ,,>1(A4)

must act simultaneously to produce a transition.
The validity conditions for the neglect of this term where W, and are some appropriate frequency
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mismatches for the atom-field and atom-atom in- basis to include those states coupled to either
teractions, respectively."5  11) or IF) by CARE. (2) Antiresonance terms in

The integral term in Eq. (AS) is treated as fol- Eq. (AS) varying as exp[*i(w., + SI)tj or
lows: (1) The only terms aM(t) of importance are exp(*2iftn) are neglected. (3) The functions
assumed to be aip(tf) and a,(t'), where IF,) is in (B lut() I M) and av(t') are assumed to be slowly
the final-state group of levels. This assumption is varying with respect to the exponential factors and
equivalent to asserting that there is negeigible are evaluated Lt time t' = t. For this assumption
population in all states outside the I and F groups to be valid, one must have
(i.e., that there are only virtual excitations of the G.it>> I, iso>>n' (A5)intermediate states). For this approximation to

be valid one must again require conditions (A4) to There is a supplementary condition which must
hold. In addition, one must require that the cross also be satisfied related to the time variation of
section for transfer within a given atom from a,(t') (see below). (4) Frequency differences
either its initial or final state to some intermedi- wp ,Iw,, are neglected with respect to U. or -w,

ate state be negligible. This cross section is -.e- and factors such as exp(iwl,,t) or exp(iwp,,t) are
cisely that associated with collisionally-aidea set equal to unity. These approximations are
radiative excitation (CARE).4 For @,r">> I and valid owing to Eqs, (5) and (A5).
X << ,, CARE is unimportant. However, CARE With these assumptions, one can easily carry
may become significant In the strong-field regime out the integration in Eq. (AS) and obtain
X uiý,; in that case, one would have to expand the

t. (Fl _11,.B).-(B I ,,IF.,) ÷ +L • j1 B). I.IF,1 . _) -(Fji)( )[)it)IB Ii-(t)I F,)
Of ~ ~ kl WSa( wr

+ ( L (t)II)+ (Fj'u(t)IB)(B I,'). 8e'0a., (A6)

where there is no sum on F and A is defined by APPENDIX B
Eq. (10). The quantity A appearing in the fre-
quency denominator can be neglected in compari- A simple diagrammatic interpretation of the
son with wap and it should be dropped for con- operators t and S appearing in Eqs. (9) can be
sistency (see below). Equation (AG) is then identi- given. The interaction between the field and the
cal to Eqs. (Sb), (11), and (13), using the notation atoms is represented by
I= iU, F=ff', B= PA ', and F,=flf'. Similarly,
Eq. (ga) can be verified. (B1)

Finally, one can check to see if a,(t) is slowly A 8

varying compared with exp(Owt) as has been as- The field takes the atom from the composite state
sumed (0 =•, or @,). By examining Eqs. (9), one A = at' to B = P'. Actually this diagram may be
can deduce that 16l/a I is given by the largest thought of as the sum of two diagrams,
of either IA , w.=1/r-i, or n'k(t=t.)X/&, where
X is a Rabi frequency in the problem. Thus, in _ L "._L
order to neglect all but the groups I and F, one ' 00 *o
must have in which the field acts on each atom separately.

The collisional interaction is represented by

(132)
v u Iw A, 0

X<<l (A0) taking the atoms from states A to B.

With these definitions, it is relatively easy to
Note that one may retain a consistent solution even draw the diagrams corresponding to the operators
in the strong-field limit, 10-%I0 (t= tI)lX/Zi•• l, §,, S. and N(IF) appearing in Eqs. (11) and (13),
provided that Or, is large enough to assure the and these are shown in Fig. 3. Figure 3(a) corre-
validity of the last inequality in conditions (A'M). sponds to the light-shift operator SL(F) which acts
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(4) For a vertex of the form (B1) assign an energy
denominator N (wl * f), with the (+) sign used if

B -F appears in the B-A matrix element and the (-)
F, B F sign if go appears in the B-A matrix element. For

a vertex of the form (B2) assign an energy de-
nominator Us.A. Energy denominators are as-
signed for all but the last vertex in any diagram.

(bW (5) Sum over all intermediate states.
As an example, I calculate Fig. 3(a) and theSF1  3 F second diagram in Fig. 3(c). Following rules (1)

and (2) for Fig. 3(a) gives

I ~ (e 1 0  ~Ib) IF,)
+i"() + X r× Fl r '(•"' 4+ •"e'r)B

I B F I B F Keeping only the slowly varying terms (rule (3)]

FIG. 3. Diagrammatic interpretation of the operators yields
(a) &L(F), (b) $€(F), and (c) T(IF). In each diagram a -le""i ((Fl 'r' A IB)VB I IrT 8[F1)
wavy-line vertex refers to an atom-field interaction and 4 (FI P I IFO

astraight-line vertex to a collisional Interaotion. +(FI Br' I r' - iF0>].

in the final-state subspace [a similar diagram can

be drawn for SL(1)]. The field excites either of the An energy denominator is assigned only to the
atoms to some intermediate virtual state and then first vertex and is )t(wsp - 0) for the first term

de-excites the atom back to the final-state mani- in (13) (since 8 appears in the B-F, matrix ele-
fold. Figure 3(b) corresponds to the collisional ment) and is h(wilp + n) for the second term in
operator S,(F); the collision excites the atoms to (13B) (since 1* appears in the B-F, matrix element).
some intermediate state B = PP' and then de-ex- Therefore,
cites them to the final-state manifold. Finally, ( e'OPPI
Fig. 3(c) corresponds to the operator t(IF). The (FIS0 IF,) =-Le"

field and collision combine to excite the atoms from
initial state I to final state F via the virtual inter- ×((FIl S " B)(B[ Iir I F,)
mediate state B. These diagrams immediately il- w8 ,1 - 0
lustrate the nature of the operators appearing in (FII
the RAIC equations (i.e., SL varies as IS JI, S +F,' ' +as %;, and I' as % ). 10,

It Is also possible to directly construct the in agreement with the first two terms of Eq. (A6)
operators from the diagrams. More precisely, the [ recall that I set exp(io,,,t) = 1 and waj, N, m p, in

following rules enable one to calculate the matrix that equation].
representation of the operators in the interaction Similarly, applying rules (1) and (2) to the second
representation, diagram of Fig. 3(c) yields

(1) Assign a factor (- 1)'- (N= number of ver- e1 fWBP r t
tices) and a factor el"wm' (G final state, /1= initial e (BI 7  (ie' 0 +8e'0 ')IJ)(F!'UIB).
state) to each diagram. Keeping the slowly varying term which varies as

(2) Each vertex of the form (B1I) is assigned the 8 exp[i(w,,- n)t] = e-l&1 and applying rules (3)-
value - (B IA r. E(t)IA). -.here E(t) is given by (5) gives
Eq. (2). Each vertex oi the form (B2) is assigned 1 e_'a' (Fiqa B)(B I i" s II)
the value (B Iu (t)IA).

(3) In the resulting expression, reject all rapidly o 1 - 0
varying terms (e.g., terms varying as exp(t 2int) which agrees with the last term of Eq. (A6) since
or exp•*i(n +co,,)t]). WSJ, - n=Wsr- A.

ai 4
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Theory of coherences produced by radiatively assisted Inelastic collisions:
Weak-field impact-core limit
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A theoretical calculation of the final-state coherences produced by a radiatively assisted inelastic collision (RAIC)
is presented. Two atom%, A and A', collide in the presence of an external radiation field to produce the RAIC
reaction A, +A;.+NfI-.A,+A,-, where II'> is the initial state, I['> is the final state, and 0 is the frequency of
the external field. It is assumed that the final states consist of a number of nearly degenerate levels and the
coherences produced in these levels by the RAIC reaction is calculated, These final-state coherences can be
monitored by standard techniques (polarization of fluorescence, quantum beats) enabling one to use the final.state
coherence& as a probe of the RAIC reaction. The calculation is limited to the weak-field (pertnuttion.theory) limit
and is valid only in the impact core of the RAIC profile.

I. INTRODUCTION (1) the external field is sufficiently weak and (2)
the detunings are restricted to the impact core

In a previous paper' (to be referred to as RAIC of the RAIC profile. Starting with some arbitrary
1), a general theory or radiatively assisted inelas- initial density matrix and assuming interatomic

tic collisions (RAIC) was developed. These colli- potentials and external-field polarizations of a
sions represent processes of the form quite arbitrary nature, the final-state density

Ai +A, +lf -A, +A•,' matrix for the system is calculated. The most
general case leads to rather lengthy expressions

in which two atoms (A and A') are excited from which are presented in the Appendices. Specific
initial states ii' to final states if' by the comr- results are given in the body of the paper for the
bined action of the collision and the absorption of a reduced density matrix of atom A' in the limits
photon from an external pulsed radiation field. of (1) dipole-dipole interatomic potential, (2)
Whereas most previous theories of RAIC consid- straight-line collisional trajectory, (3) linearly

ered only one possible excitation channel (from polarized external field, (4) central tuning, (5)
non degenerate state Hi' to nondegenerate state unpolarized initial state, (6) final states of a given
ff'), the theory presented in RAIC I allowed for atom characterized by the same J quantum num-
the more general RAIC excitation from a group of ber, and (7) a summation over intermediate vir-
initial levels characterized by some appropriate tual states that reduces to one term, owing to a
density matrix to a group of final levels. An ex- nearly satisfied resonance condition. It is shown
pression was obtained for the final-state density that the fluorescence emitted from the final states
matrix which completely described both the popu- of one of the atoms directly reflects the nature of
lation and coherence properties of the excitation the interatomic potential. Thus, in contrast with
process. The final-state coherences can be mon- normal RAIC experiments where one must record
itored by standard experimental techniques (e.g., an entire RAIC profile as a function of detuning to
measurement of the polarization of fluorescence test interatomic potentialmodels, a polarization
or quantum beats originating from the final states measurement at central tuning (where the signal
of one of the atoms); alternatively, one can moni- is largest) serves to probe the interatomic poten-
tor the final-state populations (e.g., by measuring tial.
the total fluorescence rate from one of the final It may seem strange that collisions induce co-
states). It turns out, however, that measurements herence, since it is generally thought that colli-
of final-state coherences provide a more sensi- sions destroy coherence. In fact, it will be seen
tive probe of the RAIC interatomic potentials than that the collisional interaction may be viewed as
do measurements of final-state populations. Thus, two unpolarized (but possibly correlated) "fields"
it appears useful to develop a theory of RAIC incident on the atoms from all directions. The
which permits one to calculate the induced-final- fields are chosen to have the same multipolar
state coherences. properties as the collisional interactions they

In this paper, a perturbative solution of the represent (e.g., a dipole operator is replaced by
RAIC equations is obtained which is valid provided a dipole field). In this way the final-state coher-
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ence can be understood as the combined action of etc., is adopted, where wa=E /lh and E, is the
three fields; two unpolarized fields plus the ex- energy associated with state a.
ternal field. It is the external field which may be Before the collision, the atoms are in an ar-
polarized and possesses a well-defined direction- bitrary linear superposition of the states 1)
ality in any case, that is the origin of the final- = I Wi') = Ii) I iV), where i and i' represent any of
state coherence. The collisional interaction re- the levels in the i and V' groups, respectively.
sponsible for the RAIC reaction will, in general, The field is assumed to be nearly resonant with
modify the final-state coherence. the I - F transition in the composite system,

In Sec. U, the physical system is described and i.e., n = w., - w, . More precisely, the detuning A
an expression for the final-state amplitude given, defined by
An outline of the calculation is presented in Sec. (4)
HI, with the details given in the Appendices. The
final-state density matrix is given in See. IV Ur? , wl, -w 1  (4a)
for the case outlined above. In See. V the RAIC
excitation crons sections and the polarization of is limited, in this work, to the impact core of the
the fluoresence emitted from the final state of RAIC profile
atom A' are calculated using a cutoff procedure I Al r. • 1. (5)
to treat collisions with small impact parameters.
A discussion and physical interpretation of the All other atom-atom or atom-field interactions
results are given in Sec. VI. are assumed to be nonresonant; in other words,

It should be noted that this paper is essentially all levels outside the I and F groups enter the
self-contained. However, the reader is referred problem only as virtual levels. The contribution
to RAIC I for a general overview of the problem, of these virtual levels can be included in effective
for a detailed derivation of the RAIC equations in- operators that act in the IF subspace only. The
cluding validity conditions, and for references to problem is to determine the final-state density
previous work. matrix following the collision since it provides a

complete description of the final-state coherences
IL PHYSICAL SYSTEM AND TRANSITION and populations produced by RAIC.

AMPLITUDE The RAIC can be characterized by three opera-
tors which have been discussed in RAIC I. First,

The physical system consists of two atoms, there is the "light-shift" operator SL which cou-
A and A', undergoing a collision in the presence pies and shifts the levels withis both the Initial
of a pulsed radiation field. The time of closest and final groups of levels. This light-shift opera-
approach during the collision is t- t, and the
center-of-mass position of the atoms at this time tor represents the virtual excitation and de-ex-

is 16%. The amplitude of the pulsed field in as- citation of either of the atoms by the external field.
su to, Thea plitdueing the pcollision edf is The effects produced by SL, which are second or-Ssumed to vary.slowly during the decioteliedarinonctd nahidwrk snc

evaluated at (P,, t, ); the field is taken to be of der in the field, are neglected in this work, since
the formthe field is treated in a perturbation-theory limit.

the formS[Z~-tot+ SIP1011, :

whereI[.l is the field amplitude at(t). ( ,
The energy levels of atoms A and A' are shown

in Fig. 1. Each label in the figure represents a
group of levels having a maximum frequency sep- -

aration w, << T,", where T, is the duration of a _
4 collision. Since

W',, 7 << 1, (2)

levels within a given group may be considered as
degenerate during the RAIC. The levels associated V { -

with atom A are represented by lower-case un- A A'
primed variables and those associated with atom FIG. 1. Energy-level diagram of atoms A and A'.
A' by primed ones. A capital letter refers to a Each group of levels labeled by a single letter is nearly
state of the composite system (I = i i', E = e e', degenerate with a maximum frequency spacing between
F, =fjtt, etc.) and the convention '1vels within a group less than an inverse collision time.

The external-field frequency 0 is such that Kfl• (El
•:~ ~ ýt, • , W 1to + w y, + (83) + R) _ 4+ •
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Second, there is the collisional operator S, by wavy lines) then acts on atom A to complete
which also couples and shifts the levels within the the excitation to the final state IfX). In Figs.
initial and final groups of levels. This operator 2(b) and 3(b) the collision excites the virtual state
is second order in the collisional interaction, I fe') and the field acts on atom A' to complete
representing the collision-induced virtual excita- the excitation. In Figs. 2(c) and 3(c) the field acts
tion and de-excitation of the composite AA1 sys- on atom A to excite the virtual state Iei') and the

Stern in either its initial or final state. The opera- collision completes the excitation to the final
tor S0 is the origin of the pressure broadening state If!'). Finally, in Figs. 2(d) and 3(d), the

Sand shifting of spectral profiles. The relative im- field acts on atom A' to excite the virtual state
Sportance of S, is dependent on (i) the detuning A Iie') and the collision completes the excitation.

and (ii) the impact parameter associated with a It may be seen from Fig. 2 that the transition
given collision. Owing to condition (5), the colli- operator is linear in both the field and collisional
sion possesses sufficient frequency components interaction. Explicitly,' one finds matrix ele-
to effectively compensate for the detuning A. ments of T(IF) to be
Thus, in contrast to the case I Al T, >1, where
collisional shifts can significantly enhance excita- (FlT(IF; t, b,v 7 , ,, •0 , )l )
tion cross sections by bringing the atomic transi- 1 /((FI •,4 E)(El•u((t))l)
tion frequency into instantaneous resonance with 2N
the field, all effects produced by the operator 9.
related to the detuning may be neglected. The +(Fl¶L(0))E)(Rl(
dependence of S. on the impact parameter is dis- ARIJ)) , (8)
cussed following the description of the transition
operator. where t is the time during the collision; b, v•,

The transition operator f(IF) represents the
combined action of the (field + collision) in coupling
the initial state 11) to final state I F) via a virtual .

"excitation of intermediate states. This operatorcan be represented diagrammatically by the four f. -. '

terms shown in either Fig. 2 or Fig. 3. In Figs.
2(a) and 3(a), the collision (represented by non-
wavy lines) acts to virtually excite the atoms from
state i i) to state Ief') and the field (represented -'-

(b)

A V F' ff'

Ib) (c)

•:.. e" f' p

(d)d A

.. L' 4.e' FIG. 3. A schematic representation of the contribu-
tions to the final-state RAIC amplitude complementary

FIG. 2. Diagrams representing matrix elements of the to that shown in Fig. 2. Each diagram corresponds to
transition operation from initial state lit') to final state the similarly labeled diagram in Fig. 2. Solid lines with
Wf'). A straight-line vertex corresponds to a collision arrows represent the collisional interaction and wavy
interaction and wavy-line vertex to an atom-field inter- lines represent the atom-field interaction. States e and
action. The states e and e' represent some arbitrary e' are virtual states excited in the RAIC reaction. Each
intermediate (virtual) states in atoms A and A', respec- level actually corresponds to a group of nearly degen-
tively. erate levels.
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and 0 are the impact parameter, relative speed, ed. In See. V a simple model is developed for
and collision orientation, respectively, associated treating collisions with b< b,. " I "r
with the collision Thus, during collisions with b > bo, the proba-

bility amplitudes (in the interaction representa-
+(7) tion) for the initial and final states obey the

where ; and ;' are the electric-dipole operators equations of motion
for atoms A and A', respectively; and %i( A(t)) is (9a)
the collision interaction Hamiltonian calculated
assuminj a classical interatomic collision tra- (9b)
jectory R(t). In writing Eq. (6), I have used the
fact that w, << wu, wow (recall that w, is the where it has been assumed that changes in a, or
maximum frequency separation within a group of a7 resulting from level decay and atomic motion
levels) and have adopted a summation convention (Doppler effect) are negligible on the time scale
in which any repeated state label (not including of a collision. Furthermore, it is now assumed
its appearance in a phase factor or frequency de- that the field strength is weak enough so that Eqs.
nominator) is summed over (e.g., in Eq. (6), (9) can be solved by perturbation theory with init-
there is a sum overE but not over I or F). ial conditions a 1 (t;)#O, ar(t;)=0, where t; is a
Since ý. is the sum of two terms, one can readily time just before the collision. Integrating Eqs.
identify Eq. (6) with the four figures of Fig. 2. (9) in the perturbation-theory limit, one finds a
An analogous calculation for the operator T(FI) final-state amplitude at time t + just following the
yields collision given by

(I IT^(Fl;t)I F) =(F1 i(IF;t)l I) *. (8) a,(t•)= (in)"'(fG (FJ fT(IF, t)II)e-"4dt)a, (t;).

Since f(IF) varies linearly in% and S0 varies (10)
as (•)0 2, and since 'U varies typically as b-"
(n >0), one can conclude that, for collisions with Perturbation theory is valid provided that Jap(t )12

"large" impact parameters, the effects produced << 1 for all t during a collision having b = bo. Un-
by 9, may be neglected in comparison with those der typical experimental conditions, perturbation
produced by T(IF). For"smaller" impact parame- theory is valid for power densities i 10

1°W/cm
2 .

tore, the contribution of k, can no longer be ignored. It remains to carry out the integration in Eq.
Forthepresent, Iconsideronlythosecollisionswith (10), to form final-state density-matrix elements,
b o bo, where b, is the minimum impact parameter and to average over all appropriate collision
for which the contribution from S. can be neglect- parameters.

I11. OUTLINE OF CALCULATION

Forming final-state density-matrix elements from the amplitude (10) and carrying out the average over
collision orientations 0, one obtains3

where

R", (b, vA,t=K1W' .1 do tF1 NF *)e-6 (Filf IF t'FJIN''dt (11b)

The dependence of T on (bv.,Ol, t.) has been %i(t-t,, b,v,,O) =A, (t-t•. b,v,,6)T,' T,0,
suppressed in Eqs. (10) and (11). In this section, (12)
a method for evaluating Eqs. (11) is outlined; de-
tails of the calculation are given in the Appendices. where T, and T,"S' are components of irreducible
The averaging over b and P is deferred to Sec. tensor operators of rank k and k' (assumea :,te-
V.4  gral), respectively, which act on states of atomb

The matrix elements of T needed in Eq. (lib) A and A', respectively. In the form (12), the po-
may be calculated using Eq. (6) once the inter- tential can be viewed as the sum of correlated
atomic potentialit and the field 9.1 are specified. multipolar fields acting on each of the atoms, the
An arbitrary potential can be written in the form correlation provided by the coupling constants
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A"% .The average over all collision orientations It remains to specify the atom-field interaction
needed in Eq. (Ulb) is equivalent to including all A.T -6. The field amplitude may be written
possible directions of incidence and polarizations
for these multipolar fields. In some sense, 1
therefore, the collisions can be viewed as produc- where • is a complex polarization vector. One
ing the same effect-as a sum of unpolarized, but then finds
correlated, multipolar fields acting on atoms A
and A'. This picture of the collisional process 6 L (-1)' (, r) 8, E-6 •, (18)
can be useful in understanding the coherences
produced by RAIC and is used in Sec. VI to help where
explain the results obtained for the various RAIC
cross sections.

In order to carry out the average over 6, it is
convenient to rewrite Eq. (12) in the form

where

•, "I v- q, T,•';W, (14a) (•.;=(,)-(.,/ ,(,)' (20.).

mgAN 1 Am, (14b)
[q q The quantities (AT )",i) are the components of an

and the quantity in brackets is a Clebsch-Gordon irreducible tensor operator of rank 1.
coefficient. Since the V• transform as the com- Since all the operators appearing in Eq. (6) have
ponents of an irreducible tensor operator under now been expressed in terms of the components of
rotation, the expansion coefficients Ax transform irreducible tensor operators, the matrix elements
as appearing in Eq. (6) are easily calculated using the

Wigner-Eckart theorem' (see Appendix A). The
AE(t-t;bV,) resulting expressions for ( F I 2(IF, 1 )Il) and
Q (F11 T(IF, t)I I1) * are then inserted into Eq. (lib)

601o, (0)•'AL( - t,; b, 0,O) (15) and the integration over 6 is performed using the
' Qfact that'

"where the 6 "Kj4 are matrix elements of the irre- (8g)"xf diEQ, (0)( 6,(0))*

ducible representation of order (K) of the rotation

group and 6 =0 is some arbitrary collision geo- (2K + W1) 5OK6 Q#O4,Q (21)
metry. The 0 dependence is now contained totally
in the Wl),, enabling one to easily perform the to arrive at a value for RY4 (b, v. , R, t) [Eq.
0 integration required in Eq. (lib) (see below). (lib)] and p., (t.*; b, v,,N7 , t,) [Eq. (lla)]. The
In anticipation of the time integrals also required final expressions are rather lengthy and are given
in Eq. (1lb), I define the quantities in Appendix A along with the details of the calcu-

, ( ) /lation.
A"*, (b,v.. ;)A= (v,/b) f Am: (r, b,v•, ,0) Experimentally, one often observes the final-

k'te 4state properties of only one of the atoms. Imag-
Xe'iA(T*+)ddr (16a) ine, for example, that one monitors the final-

state coherence of atom A'. Mathematically, this
and coherence is described by the reduced density

matrix obtained by tracing p,, over the final-
A ,/ 'AQ(7b'v'0) state variables of atomA. ExpQicitly, these re-

duced density-matrix elements p;#j, are given by

xeA-(r+I)dT, (16b) setting F=ff', F,=ff' and summing over f, i.e.,
which are also related via Eq. (14b). Equation (15) p

remains valid for "*AK(b, v,, 0; A). (22)
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A calculation of these reduced matrix elements, levels enters in the sun'mation over intermediate

those of atom A, and the connection between the virtual states. In this limit, the reduced'defiity
two is also given in Appendix A. matrix for atom A' is calculated. Since the final

The coherence properties of a system are con- state of atom A' is characterized by a single J
veniently expressed in terms of the irreducible value J1' =Jt, the calculation of JJ'p 'X is es-
tensor components of the density matrix. The sentially one in which the Zeeman coherences of
transformation between matrix elements is given level fI are determined.

by In order for condition (3) to be satisfiod one of

rj,, J K the virtual levels shown in Fig. 3 must be nearly
coincident with a real atomic level. This condi-

hIlp'- (-1)Jr,"u! #-/ tion can be achieved with any of the level schemes

-t, -Mi, shown in Fig. 4. For example, if the levelscheme is as shown in Fig. 4(a), then the domi-

x(fJ 1 , Mt, I P 1jf t Jj' roin), (23a) nant contribution to the final-state amplitude
comes from the diagram of Fig. 2(a) with the sum

over intermediate states e restricted to the single
along with the inverse tra~nsform group of states e = r; contributions from states

e * r as well as from the other diagrams of Figs.
(f' Jt 1 tI P1f'J, m,[) 2(b)-2(d) are relatively unimportant in this case

J K 1  in comparison with this nearly resonant contri-
=.,-t of* i'KI p ( bution. Similarly, if the level scheme is as

) i n1  -mI, Q (23b) shown in Figs. 4(b)-4(d), the dominant contribu-

'1 tion comes from the diagrams of Figs. 2(b)-2(d)

where it has been assumed that a state Ia) may with the summation over intermediate states re-

be labeled by IaJm ) and that states within a stricted to e =r or r'.

given group of levels differ only in their J and

mi quantum numbers.' The px are matrix ele-
ments of the density matrix expanded in an irreduc-
ible tensor basis. When expressed in this fashion,
one can see directly if there is any final-state
coherence. The quantity p 0 is given by (a) V

I1'lpg = (2j, + I)-'/2(fIJm, i 1. IP 'i'J 1' mr)8j,, In , '1-7

(24)
and is proportional to the total final-state popula-

tion. Any nonzero value of p" for K>O indicates (b) F-7

that final-state coherence e•.ists, since a totally f.
unpolarized final state leads to p ' = 0 for K# 0.

In Appendix A, general expressions for P°t. ,
and #P' are obtained, assuming an arbitrary in-
itial state. These expressions are evaluated in ---

detail in Appendix B for the case of an unpolarized Cc)
initial state. In the following section, certain
limiting cases of these cW.lculations are discussed. I-

IV. RESULTS FOR A SPECIFIC MODEL

In order to illustrate the physical principles in-

volved in the RAIC process, I consider a limiting (d) -

case of the general results presented in Append-
ices A and B. The following model is adopted: (1)
Each group of levels a can be represented by a A A!

single angular momentum quantum number JC, FIG. 4. Four different cases of energy-level schemes
(valid for fine-structure splittings > T"-'). (2) The that lead to a single term dominating the sum over inter-

initial state is unpolarized. (3) Owing to a nearly mediate virtual states. Each level corresponds to a

satisfied resonance condition, only one group of group of nearly degenerate levels.
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The frequency mismatches associated with Figs. respectively. Although these frequencies are
A4(a)-4(d) are small in comparison with those associated with

other virtual states, they still are assumed to

A, =wr4-, -w 1 , (25a) satisfy T Aa >> I (a =a -d) to ensure that states
r or rl still act as virtual states in the RAIC pro-

, = t+ t- w1 , (25b) cess. Experimentally, one often seeks level
schemes similar to those shown in Fig. 4 in order
to enhance excitation probabilities.

A. Wr + We - W, (25c) For the level scheme of Fig. 4(a), the final-stateSreduced density matrix for atom A' is obtained
A, Wi+w's -W• , (25d) from Eqs. (B3), (B4), and (25a) as

"I'll p(tr b,(v,, , .. ).-(bS. /Xv,))'2N 1 "'AK (bv,, 0;A)(*'At (b,- v, 0;A&)]

X1PXQA:•(- 1)"1 "t' "1 11 x * *'Iflplr) 12(r 11 T(11 11i)

X(rt T('ll i) *f *l 21'V(A# Il')(fIII TS'l' 11S)*{j , 1

J, J, J, Pk K' Jj# Jj, J,

where N, is the number of Initial states, process is represented by the product of the
"'Ax, ( "'Ao, I* factor and the reduced matrix

L ts K elements of the collision operators T', TO, T",
P 1(-)• , (27a) T"'. The field then acts on atom I to excite theLi Q Q system from state rf ' to state ff '; this

process is represented by the factor
.is a reduced matrix element, {.. is PQj (fjjA(11jr)j2, with Pjo containing the polari-

a6-, symbol, and zation properties of the field. The 6-J and
1 -=- Q=0 (2b) Clebch-Gordon coefficients which appear are

geometrical factors which arise when the various
as defined in Eq. (A17). J levels are coupled by either the collisional in-

Equation (26) has a simple interpretation in teraction or the field.
terms of Fig. 4(a). The collision excites the For the level scheme shown in Fig. 4(b), the
atoms from state i i I to virtual state rf'; t'is result is given by Eqs. (B3), (BO), and (25b) as

/'•'p'j(tt; b, v,,, A. 0 ,=a(k, k',p,p',K,K', Q; A)A;2 (-1)k'r 'r.[(2Ja. + 1)(2k + 001)]2 +

x I ( 11 r') 12 l(f 1 T(*' g) 12 IIr," 11 T°(' 11° Iil) 1

x 1 , (28)

where
ei(k, k', p, p', K, K', Q; A) = (bS 0 i/v7)2N;' &AK: (b, vT, 0; A) ["'A K: (b, vT, 0; 1)] * PsQ. (29)

This result is interpreted in terms of Fig. 4(b) as a collisional excitation from Wi' tofr' followed by a field
exciation of atom A' to the final state ff'.

For the level scheme of Fig. 4(c), one obtains from Eqs. (B3), (Bll), and (25c),
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rr pir (t,; b, v,, Re, t.)€ = (k, '.p~p', ,K'I,Q; )(1'-e-r•'..-,-.'

x J(r II p"' IIi)I*(f IT() I)Ir)(f II T('P IIr)*(f II T'•' II i')

x(f'flT'(1')IIi1)*P K Jj~' p' K ~Jk P K k pKJ (30){J, J, J t, o it ,, k K, J , J,. if

In terms of Fig. 4(c), one interprets this result as afield excitation from ii' to ri' followed by a collisional
excitation to ff'.

Finally, for the level scheme of Fig. 4(d), one finds from Eqs. (B3), (B13), and (25d)

"" p'A (t+; b, v7, , t), (k, k', p,p', K, K', Q; A)e(-1)'a ," r "[(2k + 1)(2k' + I)]-'

" a #0 86 , 1(r', 1 , (1) Ili') 121 (fll T(A) 111) 12I (f' II T'("' Il') 12

{J. J,, k' J,' J,. J1.

In terms of Fig. 4(d), this result corresponds to quencies
a field excitation from iW' to ir' followed by a col- (a = ") (32a)
lisional excitation to state ff'. X06

Equations (26)-(31) characterize the final-state X,. I W 11 w 1b
coherence of atom A'I for the level schemes of
Fig. 4. This coherence can be monitored by mea-
suring the polarization of the fluorescence emitted b85 u12(a IIW' II )(a' II "' II )/evj1/.
by atom A'I from state f' (see Sec. V).

(33)
A. Dipoledipole interaction The quantity b*,'O is a radius that typically appears

As a somewhat more specific example, I now in theories of resonance broadening ("Weisskopf
consider the case where the collisional inter- radius" for resonant broadening) and usually has
action is of a dipole-dipole nature. For such an a value in the 10 to 40 A range. Moreover, it is
interaction, ' =k' V p m=' a 1, T = A, and T, a= ;'. useful to define the dimensionless quantity
The corresponding "AA(b, v, 0; 4) are calculated
in Appendix C, assuming straight-line collision D,(Ab/v,)- be " 11 (b, v,, 0; 6) 12. (34)
trajectories,

The results for the dipole-dipole limit are con- For the level scheme of Fig. 4(a), the dipole-
veniently expressed in terms of the Rabi fre- dipole limit of Eq. (26) is

I'ppK(t,; b, v,, " t0 )0 = Nj•(- 1)' IX •/A J'(b. ,./b)'D., (Ab/v,)

X (-11K' PKo I, I"IK IIK 1 (35a)

J, J, it J, JJ I ( K if ii. J

where

!.= J! -'/t -J,-Jr' 1(35b)

For the level scheme of Fig. 4(b), the dipole-dipole limit of Eq. (28) is
""'"pi,(t'; b, v,, R; t0 ) =N-1 (-1)'b IX;?,, b 2(b;'1 /b)'[9(2J,. + 1)]

xD,(Ab/v,)(-1)KpKQ{1 1 K(,136a)

I• J. r ,
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where

(pb=J,.+J,,. (36b)

For the level scheme of Fig. 4(c), the dipole-dipole limit of Eq. (30) is
''pp #(t+; b, v,,- , t,),=Nj*'(-1)'X / j,/ I (b,"'/b)'D,. (Ab/v 7 )

K~~~ x(_1)X'p{ ~J~ J (37a)(:J"J, J1i,.j Ji. I IK, ,r it
where

o0 =J..J - 1J, -JI, - 2J,-Jj. (37b)

For the level scheme of Fig. 4(d), the dipole-dipole limit of Eq. (31) is

t p'o(t,; b, v., Re, to), = -'(-1)" Ixc.../4, I (b•d"/b)'Dr (Ab/y,)

X Pr°, (38a)
J" J,, I ." id, 1

where

q =Jj. +2J,. +J,. +1. (38b)

Equations (35)-(38) characterize the final-state coherence of atom A' for collisions having impact pa-
rameters b> be, assuming a dipole-dipole collisional interaction.

V. CROSS SECTIONS AND FINAL-STATE COHERENCES rameter at which the collisional level-shifting
FOR A DIPOLE-DIPOLE COLUSIONAL INTERACTION operator 8o becomes important (see discussion of

Sec. II). Thus, some type of cutoff procedure is
This section is divided into two parts. In the needed to account for collisions with b < bo.

first part, the RAIC cross sections are calculated In this paper, the region b <bo is treated in an

for the limiting cases represented in Fig. 4 andIntipaehergob< stetdinn

forched liing hes rpreviossentedion. FIg. 4e and extremely simplified fashion; basically, the con-
discussed in the previous section. In the second tribution from b <b, is ignored. This overly sim-
part, the polarization of the fluorescence emitted plfied procedure is, nevertheless, somewhat
from state!' of atom A' is evaluated, justified. The parameter be is essentially the

Weisskopf radius associated with the level-shifting
A. CYo- ectionlS oerator, i.e., that radius at which

The RAIC cross section is a function of t.,
reflecting the fact that a collision can occur at ,o = " (b, t)dt = 1, (40)
any time during the on time of the radiation pulse.
However, one can define an average cross section wiere S, represents the expectation value of
per pulse for RAIC excitation p'(v,) it the final-state manifold (typically, 5 < bo < 15 A).
atonm A' as F )r b < bo the operator 9, strongly couples all final-

I'1/1 Cr(V,, 4) '.ate magnetic sublevels; it is therefore reasonable
"" assume that final-state coherences cannot be

20fobdbJgdt f dT" rf44K(tc;b,v,, Rto) ureated for collisions with b<bo. Consequently,

(T'- T)J at ' the b integral for a', (K >0) can be evaluated from
(39) bo to -.o Moreover, collisions with b < be can be

estimated to contribute less than 20% to the RAIC
where T'(T') represent times just before (after) excitation of final-state populations.8 Thus, the
the radiation pulse and the A, integration is over b integral for ao, can also be cut off for b < be,
the atom-field interaction volume. In order to although the RAIC cross section evaluated in this
evaluate Eq. (30), an integration over all impact manner underestimates by 10 to 20% the cor-
parameters is required. However, the calculation resoonding cross section calculated without using
of P'/I pQ•K(tc; b, v,., t•, t) presented in Sec. IV is a cutoff.
valid only for b > b0 , where b, is the impact pa- In summary, the cutoff procedure adopted is
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one in which the lower limit of the b integral in be is one of the charactcristic resonant Weisskopf
Eq. (39) is replaced by bo. This procedure under- radii defined by Eq. (33), and 4, is a frequency
estimates a'lo by 10 to 20% and provides a good mismatch defined by Eq. (25). Since bt/bo - 4
approximation for a'K (K> 0). The perturbation and I A. I >> 1012 sec', Eq. (41) is easily satisfied
theory results are valid if "f'/p'g(t., be, v9, RA, t) for a large range of field strengths.
<<1 (i.e., the final-state populatidn is much less The RAIC excitation cross sections may now be
than unity). From Eqs. (32)-(38), and (C14), one easily obtained for the limiting cases of Fig. 4.
can derive the validity condition For the case of central tuning, the RAIC cross

section in the dipole-dipole limit for the level
I X0/a 12(bR/bo) << 1, (41) scheme corresponding to Fig. 4(a) may be obtained

where Xc is a Rabi frequency defined by Eq. (32), from Eqs. (39), (35a), and (C14) as

'*" O' (v,, 0). = 8vIr'(-)a((y I KI a)/4)(bV1./b )'(-1)%e]e [ 1K

LQj -Q. QJ

× ~1 1 1 )KI 1.
J ,J, J, Ji1 1 2 ifo J,o

where

and

(8•, f A' "Jd, Jr.dtej8.r(,,t.) 181f dli. (44)

Similarly, for the level scheme of Fig. 4(b), from Eqs. (39), (36a), and (C14) one may obtain
".• (v,. 0),- 8,N;,(-1),, [9(2J,. + 1)]."(( Ix;?,. j2 )/Al)(b~';, 1bo)"

(.1)Q8 de. Ij (, (45)

where

(ly'Z. I X- IxV.,. I (8)/S. (40)
For the level scheme of Fig. 4(c), the RAIC cross section calculated from Eqs. (39), (37a), and (C14) is

'~ or 0'(VI, 0). - 8WNj' ((I I /,,(b,, /bo) 2(- I)Q. e*e,

x [I)I KJi JK It 1, K 11K , 1 (47)
-Q. i, it itJp J ,' 1 1 J, J /1(,

Finally, for the level scheme of Fig. 4(d), one may use Eqs. (39), (38a), and (C14) to obtain

,"Ke] J(I, 0)K1, K bj.1 . (8

/1 0..1 1 (I i

,Q -Q, Q (e J,, J, J,' Ji'

Equations (42), (45), (47), and (48) give the ies (c (j = 1, 0,-1) specify the polarization of the
RAIC excitation cross sections for level schemes external field. As defined by Eqs. (33) and (40),

corresponding to Fig. 4 in the limit of a dipole- the characteristic radii bQ's and bo are functions

dipole collisional interaction. It should be recalled of v,; b*'O is proportional to v; 112 and bo is pro-
that these are tne RAIC cross sections for excita- portional to vI' (n-1) for a level-shifting operator
tion from an unpolarized initial state; the quantit- which varies as R" (n >3).
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The physical significance of the various RAIC (t't'pK(v,)) = lAV"'O((v)
cross sections is discussed in Sec. VI. It may be (53)x [N,(T" - T)~,,(3
noted at this point, however, that the RAIC cross
sections vary as where M is the A-atom density and N, is the num-

t a'=j*((jIf')/&)(bjt/bo)2bjt (49) ber of pulses per second, each of duration
I' (T - T-). Thus, from Eqs. (52) and (53), one finds

where * is a constant of order unity. Combining
Eqs. (41) and (49), one finds that, if the pertur- Sj (_1)n,-(_1)K 1 1 K
bation theory is valid, then IQ. -Q QJo•~~~X 1.b• (5)1 Kj1,,,,cK(v)j.

a' < b~. (50)1K (54)

Since bo= 10 A, the maximum RAIC cross sections -- J, Je)
obtainable with fields satisfying the perturbation- For an external field polarized according to (51),
theory requirement (41) are of the order of 100
A2. For larger field strengths, where Eq. (41) it is convenient to measure the fluorescence also

no longer holds, a strong-field (nonperturbative) propagating in the y direction and polarized in
theory Is needed. either the x or z direction (Fig. 5). That is, onetheorye is sinee$dcarctried.

Corresponding results for noncentral tuning measures a signal S, characterized by
(4*0) may be obtained from Eqs. (39), (35)-(38), ?= j Z -1 4=0, (55a)
and (C13). -/ o2

a si(nal S. characterized by

B. Fluoresence 0,1; 0, =I, (55b)

The final-state coherence of atom A' is conven- and forms the ratio

lently monitored by measuring the polarization or P = (S,- S.)/(S,+S'). (56)
quantum beats in the fluorescence emitted from
statef'. In this paper, the polarization of the Before explicitly calculating this ratio, it is
fluorescence is calculated assuming that the ex- useful to note that the general expression for
ternal field participating In the RAIC excitation p'1K and, consequently, for a',X is proportional
is linearly polarized in the z direction, to

C'1=0, (o=1, (51) 1 K]
and propagates in the y direction. [, -Q.- Q

The fluorescence signal emitted from statef' so that, for the excitation scheme of Eq. (51) with
to some lower state g' (characterized by an angu- the Q, defined by Eq. (27b), one has
lar momentum quantum number J4) in atom A' is
given by9  PKQ= - (1/M 56) , +(2/'/-),5 85. (57)

[ Ki Thus only oo and oV enter the summation in Eq.
cc (- 1) Q"? (- 1)| 4 (54). Using this fact and Eqs. (54)-(56), one can

Q.LQ, -Q• derive a polarization ratio

1K (/'/'P'Q'(V)), (52)

where'the j, (i =-1,0,1) specify the polarization
of the fluorescence according to Eq. (19) (replac-

ing the external-field polarization vector C by the S1
vacuum-field polarization vector Z) and (l*1'p',A)Q
is the average value of the reduced density-matrix
element "•'p'Q of atom A'. Adopting a simple mo- sa
del, I assume that the lifetimes of the various FIG. 5. Excization-detection scheme. The external

PQ , once created by RAIC, are determined only field is linearly polarized in the z direction and is inci-
by the natural decay rate y,. of levelf (i.e., the dent in the y direction. The fluorescence from thef'
natural decay rate is much greater than the col- -g' transition of atom A', propagating in the y direction
lision rate and the frequency separation of the fin- and polarized in either the x direction (Si) or z direction
al states). In that limit (S,), is monitored.

,I
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________1 1 2 -1 W'aP,(

,{= 1,'%(V'1'+ (58)

Within the confines of the adopted model, the ratio P depends only on relative RAIC cross sections and not
on absolute cross sections. Consequently, it is a useful parameter in comparing theory with experiment.

The ratio P is now calculated for the level schemes of Fig. 4. For the level scheme of Fig. 4(a), It fol-
lows from Eqs. (58), (42), and (51) that, for central tuning, 4=0,It

(PA+ =)•, 3 0-)2 1(9

\llt 0J• Jr.J J, Jtt, J, J, Ji j J/. I,.

For the specific case,
J,,fJ. J, MJj=Oj; Jtf.=J,=1; p.(0)=f-, (60)

while, for higher J values, P,(O) is smaller. For the level scheme of Fig. 4(b), one may derive from Eqs.
(58), (45), and (51),

P6(0 ... 3 2(-llJ,'",+ 1" (61)

lil (J/ Jr, J/'(t J1.d

Some specific cases are

J, J,,=1, Jl,=2, P,(0)=-, (62a)

Jr.'J,,0, JI.a1, P,(0)=l. (62b)

For the level scheme of Fig. 4(c), it follows from Eqs. (58), (47), and (51) that

P = P,. (63)

This result is unique to the dipole-dipole interaction. For the level scheme of Fig. 4(d), one may derive
from Eqs. (58), (48), and (51) that

I 2(-1)f'*'v4 64

pd(o) -3 3( 2Jl.+)(24J+l){1 21}{ . if: 2 1 (4
(J1, Je J~llJ, J1. 1 l,. J,. J,

Some specific cases are

J,, =0, J,.=J,.=1, J,. =2, P4(0)= a , (65a)

JI,=J,.=I, J,.=J.=0, Pd(O)=0. (65b)

The physical significance of these results is discussed in the following section.

Vi. DISCUSSION section measurements are not very useful in dis-
tinguishing between various collisional interac-

A RAIC is one of the most basic 1crrns of photo- tions since accurate theoretical expressions are
chemistry. It is, therefore, of fundamental inter- not available for comparison with experiment (i.e.,
est to understand the collisional interactions tak- there do not exist theoretical calculations in which
ing part in these reactions. The nature of the col- matrix elements are accurately calculated along
lisional interaction is reflected in (1) the total with a proper treatment of small-impact-para-
RAIC cross sections, (2) the dependence of RAIC meter collisions). The dependence of RAIC total
cross sections on detuning 4, and (3) the final- cross sections on A does provide a signature for
state coherences produced by RAIC. Total cross- the collisional interaction, provided one uses de-
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tunings outside the impact core of the line Ia IT, simulate the collisional interaction, the unpo-
>1. A limited number of experiments of this type larized fields are taken to act simultaneously on
have been performed,1° but no definite conclusion on atomsA andA'; one field acts only on atomA while
the interaction potential was reached. It should be the other acts only on atom A' (in analogy with the
noted that, for I IT,:>1, the RAIC excitation cross fact that the collision operators act on either atom
sections are relatively small. The study of final- A or A', but not both). The external field acts on
state coherences produced by RAIC offers an ad- either atom A or A'. Using this model it is rela-
ditional method for probing the collisional interac- tively easy to give a physical interpretation to the
tion. In many cases (see below), measurements results obtained in Secs. IV and V for the level
of RAIC-induced final-state coherences at central schemes of Fig. 4.
tuning A=0 (where signal is the largest) are suf- Figure 4(b). For the level scheme of Fig. 4(b),
ficient to provide information concerning the col- the collision first acts to produce the virtual state
lisional interaction. Ifr'). If the collision is now replaced by two un-

Perhaps the most important aspect connected polarized multipolar fields incident from all direc-
with the study of RAIC-induced coherences is the tions, the coherence properties of this intermed-
additional insight one can gain into the RAIC pro- late state are immediately determined. Since the
cess. The calculation of final-state conerences initial state was unpolarized and the average col-
introduces features into the problem that need not lision operator now acts as a scalar, the inter-
be considered when one calculates total RAIC cross mediate state must also be unpolarized. Thus,
sections. A particularly interesting feature can when the external field completes the RAIC reac-
be already seen in the calculation presented in this tion by acting on atom A', the coherence proper-
paper, valid in the impact core of the RAIC profile ties of the final state f of atom A' are the same
and in the perturbation-theory limit. The collis- as those produced by a radiation field exciting the
tonal interaction can be viewed as the interaction r"-f' transition in atom A' for an initially unpo-
of two unpolarized multipolar fields with atoms A larized state r'. The factor
and A'; the fields are incident from all directions
and lead to the simultaneous (virtual) excitation of 1*Kl)QK I I K
atoms A and A'. Although the fields are unpolar-
ized, they are, in general, correlated to one an- • -Q J Q // Je

other by the coupling coefficients of the collisional appearing in Eq. (45) for the excitation cross sec-
interaction [see the discussion of Fig. 4(a) below]. tion is precisely that associated with the one-pho-

The unpolarized nature of the fields arises from ton r'- s' transition, assuming state r' to be un-
the average over all possible collision orientations, polarized.
This result may be seen mathematically in Eqs. The collisional interaction affects the magnitude
(A20) and (B2). In Eq. (A20), starting from initial of the RAIC cross sections through a multiplicative
density matrix elements p., one excites final- factor. Consequently, the polarization ratio Pb(O)
state density-matrix elements pr with IK - K' discussed in Sec. V B is independent of the col-
S2. This type of selection rule is precisely that lisional interaction; it depends only on the values
produced by the external field acting alone. In J,. ,J,,,J,, reflecting the field excitation from r'
other words, the averaged collisional int6raction -f' followed by spontaneous emissiob fromf' to
does not modify the selection rule determined by g'. Thus, the level scheme [Fig. 4(b)] is not par-
the external field alone-an average collision acts ticularly well suited for probing the collisional
as a scalar, i.e., as an unpolarized field. Simil- interaction via polarization studies at line center;
arly, in Eq. (B2), one sees that, starting from an RAIC cross sections as a function of frequency are
unpolarized initial state, one excites reduced den- needed.
sity-matrix elements p' with K< 2; the selection Figure 4(d). For the level scheme of Fig. 4(d),
rule is that associated with the external field only. the field produces a polarized virtual state lir')
In contrast to these results, one finds that, for a and the two unpolarized f.elds (collision) complete

collision with a specific orientation, one could ex- the transition to state Vf'). The final-state coher-
cite density-matrix elements p, from initial den- ence of atom A' can then be thought to be produced
sity-matrix elements such that KK-K'1>2. It by the external field acting on the i' - Y' transition
is only the averaged collisional interaction that and an unpolarized multipolar field incident from
acts as a scalar. all directions acting on the transition r' -f. The

Thus the total RAIC reaction can be viewed as transition amplitude for the r' -f' transition de-
two unpolarized (but correlated) multipolar fields pends on the multipolarity of the collision interac-
plus the external radiation field acting on atoms tion; this dependence is given by the weighting fac-
A and A' to produce the ii'-ff' transition. To tor
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J1, J1 K? proportional to one another; for other collisional

In order to have a more complete picture of the
fintersactions, this produrtiedliy Ris, lot.i

appearing in Eq. (48). Since this weighting factor desirable to extend the theory to include the cases

coulesK ad k, te fnalstae chernceand the of large detuning (I Aj17 r>l1) and large field
poarzaio rti Pcan be used to distinguish strengths (nonperturbative solution). Such exten-

different collisional interactions. sions may pose some interesting problems in the
For the dipole-dipole interaction, k' =1, and the average over collision orientations, since the col-

collision interaction on atom A' can be replaced lision interaction no longer enters linearly in the
by an unpolarized electric field incident from all final-state amplitude. Owing to this nonlinearity,
directions producing the r' -f' transition. Thus the analog between an average collision and an un-
the coherence properties of state!'l of atom A' polarized field may no longer be useful.
are the same as those produced by two-photon In summary, I have presented a calculation of
excitation of atom A', the first photon provided the final-state coherences produced by RAIC in the
by the external field producing the transition i' weak-field limit that is valid in the impact core
- r' and the second by an unpolarized electric of the RAIC excitation profile. The resulting final-
field incident from all directions producing the state coherences can be monitored by standard
transition r' -f'. The polarization ratio P,40) for techniques (polarization of fluorescence, quantum
the excitation-detection scheme of Fig. 5 is then beats) and may provide information on the collis-
easily calculated to be the simple function of ional interactions occurring in the RAIC reaction.
J1 .,J,.,Jy#1J,. given by Eq. (64).
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plete the transition to state iff). One might think stay is deeply acknowledged as are conversations
that the final state!' of atom A' would be unpolar- with C. Br~chlgnac, Ph. Cahuzac, J. L. Le Goubt,
ized since it was produced by an unpolarized field J. L. Picqud, and R. Vetter. I should also like to
incident from all directions. However, this con- acknowledge financial support from the Fuibright
clusion need not be true owing to correlation ef- Foundation. This research was also supported by
fects between the unpolarized fields. This effect the U. S. Office of Naval Research.
is best illustrated by the case of J, =J I=0, J,= 1,
and an external field polarized linearly in the z PENIa
direction. In order for the overall Am =0 selec- iPN1
tion rule to be satisfied, only that part of the un- Appendix A is divided into three parts. In part
polarized field producing a Ant = 0 transition is A, some notation is introduced and the relation-
utilized. Thus, only a Part of the unpolarized field ship between the direct product and Irreducible-
acting on atom A is used. Owing to the coupling tensor subspaces is established. In part B, the
coefficients A:,k in the collisional interaction, this relationship between the two-particle and single-
result implies that, correspondingly, only a part particle (reduced) density-matrix elements is;
of the unpolarized multipolar field acting on atom given. Finally, in part C, the final-state density-
A' contributes in the i' -f' excitation. This result, matrix for RAIC is calculated.
in turn, implies that state!' can be polarized.
For the conditions of Eq. (60), a polarization ratio A. Rebatiordhip between bases
P,(0) = f was found. Since the polarization ratioAsteofhecm sieA'ytmisrp-
for case Fig. 4(a) is a function of the multipolarity Asaeo h opst Asse srpe
of the collisional interaction, it can be used to pro- seated by a capital letter, e.g.,
vide an Indication of the collisional processes par- IF f' f f) ~JmI', n.'

ticipating in RAIC. If) ) fj I JM0
Figure 4(c). The analysis of the level scheme of (Al)

Fig. 4(c) is similar to that for Fig. 4(a), except
that the field acts on atom A' rather than on atom where it has been assumed that the angular mo-
A. For the dipole-dipole interaction, in which the mentum of a level can be represented by a J quan-
external field and the collisional operators have tum number. The angular momenta appearing in
the same multipolarity (k =k' =p =p' = 1), the RAIC the direct product basis (Al) can be coupled in the
cross sections for cases Figs. 4(a) and 4(d) are standard fashion,
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I~ ff',Ji i,J, m,) 
[JY J3: K]1PY m9 -m- QI

ICIJJr i n)mf)V'J,. mju, (A2)
m, M1 M x(FJ-imj•[pl F•jl yMI; ), (A3b)

where the bar indicates this coupled basis. As in where the total J and mr values of the barred
the main text, I use a summation convention in basis are explicitly written in the right-hand side

which all repeated indices (not including their ap- of Eq. (A3b).
pearance in phase factors or frequency denomina- The time rate of change of density-matrix ele-
tore) are summed over. 2  ments produced by RAIC can be expressed as"

Matrix elements of the density-matrix operator
in the barred basis are related to those in an ir- S1, r FA P11 (A4a)
reducible tensor basis, •lpx, via the transfor-
mations

or
- , (r, F1, T, T) p (A4b)

P•-F(7]Pvl•) (-1)Jix lI H, PC,
My -My Q The relationship between the F's may be obtained

(A3a) from Eqs. (A1)-(A4) as

, Tr. Mi M4 I# J-, . 7 . KQ

-mF 11 QJLn% m, myjmi n4 l n,. mI' I L -mM1 QIF
py F ( m/ ,m ,, rol,, m t, m,,, m , ,mI , mi M f) (A5)

along with the corresp")nding inverse transformation.

B. Reduced density-matrlx elements

The reduced density-matrix elements for atom A' are defined by

pAA a some IP l ffp)r (A6)

In terms of the matrix elements of irreducible-tensor operators defined by Eq. (23a), one can use Eqs.S~(Al)-(A) and some elementary properties of the Clebsch-Gordon coefficient to derive

/p'/p1eg ), +J + (2J, +l)(2J +i)11/2 J7 J71 117i-p(ffIjijJ; ffJji (A
-~ if i ~ p (/ '/t, it; Q 'It JT) WA)

Equation (AW), in which the { } represents a 6-J symbol, enables one to calculate the reduced density-
matrix elements of atom A' from the two-particle density-matrix elements. Similarly, reduced matrix
elements of atom A are given by

Pi, = (ff' Ip If1 ' (AX)

and

Ji J t K F;(
1if pK(..)JfJ7+ -Ft g [( 2 J +1 ) ( 2 J-; 1)11/2 FY1 K .f j17;fJ fJ (A9)
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C. Calculation of 1P9

Starting from Eq. (10), I now derive an expression for "lp•(t+; b, vk , , t,). Equation (10) may be
written

ajt+t)=(F[ TI)a, (t;) ,(A10a)

where

j+ (Fi1~)1e"d (A10b)

Equation (AlOa) could equally well be given in the coupled (barred) basis as

.aý(t)(Ffi] T)a(t;), (All)

so that the final-state density matrix is

,t.;b,v,,eR,, to ) .(7 T1 )(7 T1 )*P1 - (t;) .(A12)

The matrix elements of f are expanded as

MP -m r gj ,'FI j JT G]

Equation (A3a) is used, and some identities involving the angular momentum coupling coefficients are em-
ployed to transform equation (A12) into

"Ij4IPKQ(t;.* b, v,, Ri, t.) 1(.-l)ay-G'+JT .X' (. 1)"UQ'[(2G + I)(2G'+ 1)(2K + l)(2K' + I)11/2

-gV , -g. 71 T * t(F ,F lyT , Tl , G , G ', g9 P g ')T T, p":(t;) ,

(A14)

where

H(31, 111, 7, TI, G, G', 1,,,g') z-(80a)"• f do J-Tf •t •) (A15

and the quantity in large curly brackets is a 9-J symbol. The quantities "I'G may be calculated by (i)
using Eqs. (A13), (AlOb), (6), (13), (18); (ii) expanding all intermediate states appearing in Eq. (6) in
terms of the barred basis; and (iii) using the Wigner-Eckart theorem to evaluate matrix elements of (T r)
and 'Vo. One obtains

'•=(_1)31T, 4 JT* +=z 24% 11, ( ) i ) I" '=II)(W )

+ (- 1)i Y' o y*(Ph' ]1 °v~' IIE) >(A•H (jI r)() II 7) (w,)"
• (A16

I G] " JJ r I

where A•'A (b, v,., 0; A) is defined by Eq. (16b), (II " II) is a reduced matrix element. : is defined by
Eqs. (17)-(19), and
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Q,=1,Q- 1=-,, Q0=0. (A17)

Equation (A16) and its complex conjugate are now inserted into Eq. (A15), and Eqs. (15) and (21) are
used to arrive at
i It(,,xT Tx, ,G',~g')=b~r)'2Kkl' A."A, (b v ,O;A)[#-OAx, (b,vr,0;4)1*

X [K Ij ,J r.K C(F', 7, G, k, k',K) [C(FIx, 1, G', PP', K)J* (A18)

where (: (1

C(FT,G,k,k',K)=(- )3J?' 1(,)("(•) l(1 )(l 1h' yl l) I) KI
(J, 4l

The quantity C is easily identified with the four diagrams of Figs. 2 and 3.
Combining Eqs. (A18) and (A19) and carrying out the summations over magnetic quantum numbers, one

obtains
i~l'p•(t:; b, v,, i•, t=) = (- 1)2fl3J'OX .ffx° Xo(_ i)QO'*,o 'u.z(• )

Sx qN,.[(2G +1)12G' +1)(2K +1)(2K(' +1)11 -/2 [K

Unpolrize Inta slat

+ 1Q, M. G G F( G, G' X
SC(F, 1, G, k, V', C)[C(PI, 7,, G' ,/,p', R) ]*14pl: (t;). (A2.0)

It iw clear from this equation that Ini -KI <2, i.e., that the collision acts in some way as a scalar op-
erator (see Sec. VI). Reduced density-matrix elements may be obtained from Eq. (A20) by use of Eqs.
(A7) and (A9). Density-matrix elements in the magnetic sublevel basis are related to those in the ir-
reducible tensor basis by Eqs. (A3) and (A2) or, for reduced density-matrix elements, by Eq. (23b).

APPENDIX B

Unpolarized Initial state

in Appendix B, the reduced density-matrix elements for atom A' are calculated for an unpolarized in-
itia state. An unpolarlzed initial state corresponds to

n71po f(t;) = (2JI + 1)t / 2 N I-I o, O , Q (Bl)
where N, is the total number of initial states. Using Eqs. (MT), (A20), and (BI), one may obtain after a

little algebra' the reduced density-matrix elements for atom A',

"I1\,1"*Jl*K".•*G'/b-"x)'(2 +l )(2G' + 1)

"X [(2JI; + 1)(2Jx + 1)] [NI (2W + 1)]'•"A'A V(b, v,, 0; 4X)

x [C(GKI, ,G' ,Gp',K ') .. (BGk)

FIJ i IJ1i
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The product of the C's can be calculatedl explicitly and the final expression simplified using identities in-
volving the angular momenta coupling coefficients.'

One obtains 16 terms corresponding to the square of the four terms contributing to the amplitude in Fig.
2. The result may be written in the form

' Ap' K(t .; b ,'v ,, R 't .)= N ,'A'N A :(bv, O ;A )[ WAx (bv , O;A )I* 1 K1)Q a[,

x $.a(k, k, ,p',p K, K ,f J'1) ,(W

where %a represents the contribution from diagram a and the complex conjugate of diagram 0 in Fig. 2.
Explicitly,

0 =[(W. +w,. - W,) (W,1+car - WJ)]' 1(- l)Je-EJ,. I,"Jt OKIe ,

x f IIA (I'lle) ¢ I " l ) < ll " l a< lT(fO • l T ' 'l r • l [ " 'l )

$ I 1K k P K *1~ p' K (k' P' K (B4)

id tf) (i J. iP k KJJF t. J01)

., = [(W. +e,. - `.)(wt +W,. - wP)]•(- 1)] zegr" rJ,"•''

X I I k p I p K p J k ' p, ' 1B.5

= [((w, +w.. - :)(wo,.+w,. - c) (- I)X.,.. •..[(2J,. +1)(2k + 1)(2k' + 1)1"

S× d ~ " ll it, ,11 (J0
i I1.• = [(`o, +%,rj+.r 4d.184 +44,, W #Poe•( 1","':•°: '*It*t"t

= [(w, +Wt. - WJ)(Wd +wt. - 1 ,)]J'(- .J).J'J"": Jf

x (f IIM" II e)(d' IIA" MIIi *(eII T(h)kl) (f II Ti'"II j)*"'j IITD""II

x k' P' K ' P 1K K

, = [(w, +w*.. -w1)(w% +wo, - w,,)]'(- l)J"'..Ji.1.'z,..kiJ, .$k-e,4h,t*9.,

1J KJ/ P1jkP'1k ' (W9)

p # J/ Ji~ it J. k ,J. 4
x~ x< Ill,,")1 )dl jl ) 1i,*el>,NI i(
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61d = [(w/ +W.. - W,)(W, +wd. - wp,)]"1(- 1) f'rKE.J

x I(f IIT(kIIj)I2(efIIT4'(,')IIf I)(IITe(hd)IId•?*" 1 (BIO)

it, ,e, J,. J, ,. 1

x(eIItl• I ) I (d' II 'tt( II i)* (f* T(' ) II e) ( fII T ("IIi )*(f'II T4'(k D)II ') (f II T'( )II d')*pj 1 I K Y p l . pKýJ B1

itil t J1- Jj k' K•' 4J.' Jt

9 (w. + We. - wA,)w + W - wr)] )1 T ( Jj 1Y +j' + K+ K(2# + 1)(2W + 1)] 21

X~ellA j~() 11 i) j~,(dl 11 L'~(d'1 B AV1)* UI (k1e flB T'0)11) 0 *(f' II T"')11 B')~'lTI~ld)

(k pI T"'ý k p') Ir Jl K 1 (B12)

and

8a8 (k, k' ,p,p , K,K', f' ,f•) = (_ 1)41't' [' e¢(P~P', k, J, JK,K', fi, f' )]* (Bl4)

Some of these terms may vanish owing to the selection rules appropriate to the level-coupling scheme and

interatomic potential under consideration.

APPENDIX C

Dipole-dipole interaction

In Appendix C, the quantities A•' and ** 'A• are evaluated, assuming a dipole-dipole collisional interac-
tion between atom A (dipole-moment operator jZ) and atom A' (dipole-moment operator •st) of the form

(w + w•., ' - wr)(. + w. - ,)/]' 1(1+2'cil•) (k+1)2' )

where R is the separation between the atoms. For a given collision geometry, ) is a function of = t -

(the collision is centered in time at tJt'), b, vg, and 0.
Writing d and iP in the form of Eq. (20) and defining

Rz=-(R•--ipjp ), RK~f ' ,fit)=• ,.p~l Ro=R•KK' ,'f (B14)

one may rewrite Eq. (Cv) as

-4-

-u = (T , 1b, R1, - )• 3;A'-AM' , (C3)
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where

All, (T, b, v,, e)=[R2(6,o 64,0 - 64160*, - 0_6,. ý1,•) - 3 RR, ]1R'. (C4)

Equation (C3) has exactly the same form as Eq. (12) since A' and (;L )I are components of irreducible
tensors of rank 1.

The quantities of interest in evaluating RAIC cross sections are the Fourier transform of the All, de-

fined by Eq. (16a). Using Eqs. (C2), (C4), and (16a), one finds

A'. (b, v, ,0;A) (v, /b)e J A", (T, b, v., O)e'i &dT , (C5)

where

Au(7, b, v,, 0) : [A.ll(r, b, v,, 0)]*: - 3(R. -' - 2iRR,)/2R, (C6a)

All (,r, b, v., e) =AI[(T, b, v, e) =-[All. (T, b, v To e))

= A0',b , ) R R - RI" R,(M~)

AI(T, b, v., e) =(R- 3,R.)/R 5 , (C6c)

All-,(T,b, v,,e)=AL_1 (T, b, v,,e)=JA•(T,b, v,,()) (CMd)

The corresponding equations for the "1AN defined by Eq. (14b) are

""I A (b, v,, ;A)(v,/b)" . f 08 148, IA' (T b, v,, )e"A dT, (C7)

""A 0 (T, b, v,, 0) =0, (C8a)

IJAI(T, b, v,, 0)=O (Qf1, O,-1), (CMb)

"A';(T, b, v., e) =["A!, (i, b, v, , e)] 3(* , (• -,RI 2 itR, R,,)/2R, (M~)

"zA,2(T, b, v,, e) - [ IA!.x(Tp b, v.,, e)] 6 R, (R,- iR ,)/RI, (M~)

TA(b, v,,0)=3(R2- 3R8)/61/2R5. (C8e)

It should be noted that the RAIC cross sections depend only on the quantity

##,',A,,. (b, v,4f'•,(b, v, ,e;4•AQsA (b, v,,e;A)]* . (C9)

The fact that Ag, is independent of 6 follows directly from Eq. (15) and the orthogonality properties of the

rotation matrices; from a physical viewpoint, this result is to be expected since the calculated cross sec-

tions cannot depend on the choice of the reference geometry 0 = 0.
pI

Stndraht-MM tnjectod"S (Cw) and (C7), ore obtains

Under the assumption of straight-line collision AI(b, v,,, 0; A) =- eA t bV3

trajectories, the various A's are easily calcula- x[ aK 1(a)- a 2Ko(a)], (ClOa)
ted. Taking as a reference geometry R1 =VT,
R=0, R. =b, and letting (t -t,) - in Eqs. Al(bv 7 ,0;A)=- e-I:b-32K,(a), (ClOb)

t
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A"(b, v,,0;A)=-2e-"i€b"3 and Ki(a) is a modified Bessel function. The
dimensionless quantityX x[pK 2(a)- aK,(a)1, (C10c) Dx(c)=bB•.,1A•(b, V,; A)j 2

Dca =x]b b6,,O;&)-b vAx
II2b-v ;A) An(b, v , 0; 6), (Clla) is given by

+ 6 [a 2K2(a) - a K ,(a)j 2} 5x.2 (C13)

For central tuning, a =0, Eq. (C13) reduces
where to

ci=tab/v, (C12) Dc(O) = 86K2. (C14)

*Permanent address. 61n averaging over (, it has been assumed that all E are
1P. R. Berman, Phys. Rev. A 22, 1838 (1980). equally likely, which is equivalent to assuming a uni-
2Labels appearing on both sides-of an equation are not to form distribution of relative velocities. If one or both

be summed over. of the atoms Is velocity selected, this assumption is
3The final-state density-matrix elements are the same no longer strictly true. One can incorporate the effects

whether calculated in the "normal" or the interaction of a nonuniform relative velocity distribution into the
representation, owing to condition (2). average over e, but the results take on a much more41n RAIC I, a quantity 1%(v,, t,) was defined giving the complicated form.
(complex) rate at which RAIC produces a final- TThe symbol f'(f 1) as a superscript on p'# is a shorthand
state density-matrix element Ppp, from an Initial one notation for f'.J,(f'JVt); consequently, there is no sum-
p,,,. If Eq. (11) is multiplied by the number of colli- mation on J1, or its lI Eqs. (23).
sions per unit time with the Impact parameter between 8M. G. Payne, V. E. Anderson, and J. E. Turner, Phys.
b and b+ db and relative speed v,, and if an average Rev. A 20, 1032 (1979); E. J. Robinson, J. Phys. B 13,
over b and ]A, is performed one finds 2359 (1980).

(V, t,)/t)RAIC= 'r" v,, (v,, t,), 9S. Haroche, in High Resolution Laser Spectroscopy,
Ppi Vedited by K. Shimoda (Springer, Berlin, 1976), pp.

where 275-279.
Il (v, t,)= XA•Itev, f 2,bdb fdAR•, (b, •ptc), "0S. E. Harris, J. F. Young, W. R. Green, R. W. Fal-

SJr.& cone, J. Lukasik, J. C. White, J. R. Willison, M. D.
01,t Is the a-atom density, and the f integral is over Wright, and G. A. Zdasiuk, In Laser Spectroscopy IV,
the atom-field interaction volume, edited by H. Walther and K. W. Rothe (Springer, Ber-

'A. R. Edmonds, Angular Momentum Theory in Quantum lin, 1979), p. 349 and references therein; C. Br~ch-
Mechanics (Princeton University Press, Princeton, Ignae, Ph. Cahuzac, and P. E. Toschek, Phys. Rev. A
N.J., 1957). 21, 1969 (1980).
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Theory of collisionaily aided radiative excitation in three-level systems

s. Yeh* and P. R. Berman
Department of Physics. New York University. 4 Washington Place, New York, New York 10003

(Received 18 March 1980)
A theory of collisionally aided radiative excitation (CARE) for three-lceve systems in the weak-field limit is

presented. Cross sections for the excitation of three-level atoms by two off-resonant pulsed radiation fields in the
presence of collisions with structureless perturbers are calculated. Analytic expressions for the cross sections as
functions of atom-field detunings are obtained under usual classical-trajectory and rotating-wave approximations
using perturbation theory for various regions of detunings. Examples for the resulting excitation linc shapes are given
mostly for van der Waals potentials. A dressed-atom picture of the CARE processes is discussed. Emphasis is put
on an interesting effect arising from the interference between the "stepwise" and the "direct" channel of excitation.
Such an interference effect manifests itself as modulations in the total excitation cross section as a function of
relative interatomic speed in some cases.

I. INTRODUCTION II. THE PROBLEM

In this paper, we present a theory of collisional- Consider a three-level active atom, which may
•ly aided radiative excitation (CARE) for three- have one of the configuratir, ns shown in Fig. 1

level systems In the weak-field limit. CARE In with level separations h w21 and/11w32, subjected
two-level systems has been the subject of many to two off-resonant incident pulsed radiation fields
recent studies.1 Approximation schemes, valid of frequencies w and 0w' and amplitudes E(t) and

SIn different regions of atom-field detunings, have E'(l). The atom simultaneously undergoes a col-
i.] been used and verified by numerical calculations. 2  lision with a structureless perturber. Under some

In three-level systems, however, calculations conditions to be stated in this section, we calculate
have been limited to a narrow range of detunings. 3  the 1 3 excitation cross section as a function of

It Is thus desirable to have a theory which is free detunings.
from such limitations, The fields E(i) and E'(t) are assumed to drive

edand define the conditions under which the treat- interactions characterized by the coupling strengthsment of this paper are applicable. The complexity x(1) = l 12E/2h and x'(t)--- '2 3E'/21t, respectively,
l! f athree-level CARE problem over its two-level where 111 and 1133 are the dipole matrix elements

i conterartIs due partly to the fact that there are of the respective transitions. The collisions are
Stwo detunings which can be independently varied, assumed only to shift the energies of the active-
t In addition, the collision-Induced energy shifts atomic levels without coupling them (sometimes
[ of these three levels can be of either a positive referred to as adiabatic approximation), a gener-
Sor a negative sign (relative to the detunings), lead- ally good aissumption in the case of electronic train-
! ing to different physical situations. It becomes sitions in the optical regime because of the lack
i necessary, fer the convenience of presentation, of interatomic potential curve crossings (except

to classify the cases according to the sizes and perhaps at extremely small internuclear distance
i signs (relative to those of the collision-induced which cannot be reached with ordinary thermal

energy-level shifts) of the detunings. This is done energy).
in Sec. III. A "dressed-atom" picture of the phy- If the atom-field detunings A and A', defined as
sical processes will be given in Sec. PV with dis- A = •- wv1 and A,- w'-w3•, are larger than the

Scussions of interesting interference effects for Doppler width, and/or if the incident pulsed fields
some cases. In Sec. V, the basic equations in- are adiabatic, the excitation cross section are

Svolved are given. The solutions and results for r~egligibly small in the absence of collisions. In
cases as classified in Sec. III are obtained in Sec. both cases, the collision can greatly enhance the

VI. In Sec. VII, we discuss the advantagos of excitation by either breaking the adiabaticity or

using CARE over conventional atom-atom col-. shifting the energy levels of the active atom rnot

tins Te apris concluded in Sec. VIII. Ap- fields. We shall confine the discussion of this
pediesA ndBprovide some caiculational de- paper to detunings larger than the Doppler width

i Supported by the U S. 0111ce 01 liaeal Research22 10©190IhAnccnIyl•lSony

undr ~nrat c.139014-7.C-0553.

Reproduyctrosn in holc or tin part is C pertitted

foJ" any purpos ul heO,ted Stlaes G•u~t, lentl.e
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-3 the inverse of the detunings and the pulse dura-
tions. In such a pressure regime, one can take
the CARE rate to be linear in the perturber den-
sity and calculate the CARE cross section for a
single collision, from which the CARE rate is ob-
tained by averaging over all possible collisions.
This procedure is followed throughout this paper.

The conditions on the pulsed radiation [Eqs.
(a) (2.1)-(2.4)] can be met by ordinary laser pulses

which have typical pulse lengths (L10"9 sec) much
longer than the collision time (-10"12 sec). The
pressure range we are considering is typically
of the order of 10 Torr or less in order to satisfy

2 the conditions stated above.

Ill. CLASSIFICATION

.3 For the convenience of presentation, the three-
level atom is assumed to have a configuration
shown In Fig. l(a), unless otherwise stated. The

( b theory to be presented is equally applicable to
other configurations with suitable changes of the

signs of detunings and of the relative energy-level
shifts.

Consider such a three-level active atom [Fig.
l(a)] undergoing a collision with a structureless

3 perturber. The energy levels are shifted during
a collision, as shown schematically in Fig. 2,
for some specific collision impact parameter b
and relative velocity v in a manner depending on
the assumed interatomic potential. The relative
shifts of these levels can lead to an increase or
decrease in the atomic transition frequencies over
their unperturbed values. In the case shown in

(C ) Fig. 2(a), both the 1-2 and 2-3 transition frequen-
FIG. 1. Configurations of a three-level active atom cies decrease (shift toward the red), and one

for CARE. (a) Upward cascade, (b) IMverse V. and (c) speaks of (relative) attractive Interatomic poten-
V. tials. Conversely, the transition frequencies in-

crease for repulsive potentials. Although differ-
ent combinations of attractive and repulsive po-

that the pulse durations are much larger than the tentials for the 1-2, 2-3, and 1-3 (two-photon)
collision time, and that during a collision the field transitions may occur in a three-level system,
amplitudes are constants; that is, we shall be concerned only with attractive inter-

I & I> WD (2.1) atomic potentials. This restriction (to the at-
tract ive relative interatomic potentials) is for the

where W. is the Doppler width, convenience of the presentation; the theory to be

Iim XM), x't) - 0, (2.2) presented is, nevertheless, applicable to all types
mt), )0of interatomic potentials.

dx dx' What is essential in the theory is the existence

di da'- d , (2.3) (or lack thiereof) of the collision-induced instan-
taneou3 resonances during a collision. When the

and detunings equal (both in signs and in magnitudes)
the relative energy-level shifts, resonances occur.
In Fig. 2(a), instantaneous resonances occur at

during a collision. *To for 1-2 transitions, *T,' for 2-3 transition, and
In addition to conditions (2. 1)-(2.4), the per- kr'o for 1-3 two-photon transition. Such instan-

turber density is assumed to be low enough that taneous resonances enhance the absorption of ra-
the time between collisions is much longer than diation, especially in the case of lai ge detunings.

4
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E3(t) and the antistatic (A) regions where no instantan-"
eous resonance can occur (e.g., blue detunings
for attractive potentials).4 In the three-level prob-
lem, classification of the cases is complicated

E2(t) by the possible combinations of I, Q, and A regions
for A, A', and A + A'. If there is no constraint,
there would be a total of 27 cases to be discussed;
the fact that A + A' cannot be independently varied

SE1 (t) and that we restrict our discussion to attractive
potentials reduces the number to 13 cases.

The cases to be considered are listed in Table
IIII -t I according to the region of each detuning. In the

third column, the conditions, appropriate for
attractive potentials only, are also listed to hell)
clarify the cases considered. In subsequent sec-
tions, results are given mainly for attractive van
der Waals potentials, although the treatments are
generally applicable to other types of potentials.
Table I exhausts all possible cases where attrac-
tive potentials only are considered. It does not,

EIII(t) .owever, include all cases for a general inter-
Ell () atomic potential. We choose not to include all

possible cases because it is impractical to do so
El(t) and may lead to confusion. At any rate, for the

cases nol included, one can find applicable treat-
ments in one of the cases included.

It is natural to group together the cases in Table
! I for which the mathematical treatments are simi-

TOv lar. In Sec. VI, we present the solutions and the
results according to these groups. We group
cases A, B, and C (4 in the I region), cases D

(b) and E (A' in the I region), and cases F and G (A
FIG. 2. Energy levels of a three-level active atom +A' in the I region). Cases IH and I, which have

(during a collision, schematically shown for a relatively two of the three detunings in the Q region and the
attractive interatomic potential. (a) In a bare-state- third detuning in the A region, will be grouped
classical-field picture, the energy levels, thus the de- third altuning in the
tunings, are time dependent. As shown, resonances together. Case J, with all three detunings in the
occur at tT0 for 1-2 transition, iu' for 2-3 transition, Q region, is the last and the most interesting case
ani +To for 1-3 two-photon transition. 0)) In a dtressed- to be treated, Cases K, L, and hlwill not be discussed
state picture, the resonance points in (a) are trans- since at least two of the detunings are in the A
formed into level crossings of the dressed states, region, leading to exponentially small excitation

cross sections. Although numerical calculations
can be performed to obtain cross sections for
these cases, reliable analytic approximation

The studies of two-level CARE (Ref. 2) have schemes have yet to be developed.
led to the understanding that the instantaneous
resonances are important when the detunings are
much larger than the inverse collision time Tr1 ,

i.e., ideiuningT',>> 1. For IdetuninglT<,l 1
[impact region (I)], the existence or lack thereof IV THE DRFiSS..).-A1ONI PICIURE AND GENERAl.
of instantaneous resonances is unimportant, and CONSIDERATIONS
the absorption cross section varies as Idetuning I"
irrespective of the sign of the detuning. The case Tn this section we shall give a general descrip-

of Idetuning I T,: 1 can be divided into two regions tiorn of the physical processes in terms of the

according to the sign of the detuning relative to the "dressed-atomn" picture' (sometimes referrel to
interatomic potential: the quasistatic (Q) region as the atom-field diabatic representation)" in
where the instantaneous resonances can occur which the eigenstates of the Htamiltonian of free

(e.g., red detunings for attractive potentials), atom i free fields + atom-field interactions (i.e.,
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TABLE I. Classification of cases.

A A' A +A' Conditions appropriate for attractive potentials Case

1 I I A[,<<I1, IA'IT,<<1, IA+A'[I<<I A
I Q Q IAIT<< 1, IA'ITc>>I, IA+A'IT,>>1, A'<0,A+A'<0 B
I A A IA1T,<< 1, IA'ITC>>I, IA+A'ITc>>, A' >0,A+A' >0 C
Q I Q IAITc,1>>, IA'Ic'<<1, A+ A'rI»>>l, 4 <0,A+A'<0 D
A I A 1AITc>>1, JA'IT,<-1, [A+AITc>>1, A0>,4+4,'>0 E
Q A I IAITCx>.1, IA'1i>>I, IA+A'ITc<<, A<0,A' >0 F
A Q 1 IrI >> 1, IA'IT,>>, I +A'IT,<I , A>0,A'<0 G
Q A Q 141ci>>1, IA'IT,>>1, IA+'0T>>1, A<0,A'>0,A+4A <o H
A Q Q lairT>>1, IA'I 1T,>> IA+ 0'Tc>>1, A>O,A' <0,A+A'<O I
Q Q Q 141Tci>>i, IA'IT>>, 1A +A'4Tc>> 1, A<0,A'<0,A+A4<0 J
Q A A 1AIT>>I, IA'i0 r¢>> l, 1A+A'Ir1>>1, A<0,A' >0,A+A' >0 Ka
A Q A 141>T , I>> A'IrT», JA-'1r, >>1, A>o,A'<o,A+A'>0 La
A A A I1ITc>>1, IA'I0Tc>>, IA+A'I0,>>1 A>0,A' >0,A+A' >0 Ma

a Not treated in this paper.

atomic dressed states) are taken as stationary erally linear combinations of the "bare states"
states and the collision, which couples the dressed (I. e., elgenstates of free atom + free-field Ham-
states as well as shifts their energies, is treated iltonian) and, in the weak-field limit, can be ap-
as a perturbation. The dressed states are gen- proximated as

I) = (- x2 /24A2 ) I1 ,n,1') +(x/A)•2,n - 1,n') +[xx '/A(A + A')] 13,n - 1,n' - 1),

i1,n,16+ 0 - X1/242 - X'•/2&'2)I2,n - 1,W) + (x'/41)13,n - 1,n'- 1), (4.1)
III)= [XX ,/A '(4 , + 4 ')ll n' 1-(x 7 A ') 12 , nis- 1 , nW ) + (1 - '2 A ') 3 n , ' )

with eigenenergies decades.

El = El + nfilw + nAW, + X2/A The coupling between the dressed states by the[' collision is characterized by the off-diagonal ma-
Ell= E, + (it - 1)Ifw + n'hw'--x2/A4+ X12/, (4.2) trix elements

E,11 = E3 + (n - 1)JI + (n 'I- 1)h,' - X'I', (2IU (t) III)= (III u()II)c. (X/A)V(t),

where E0, E2 , and •3 are energies of the atomic 41IU(1) IIll)= 0llv(t)lw> (X'/4')V'(t), (43)
states 1, 2, and 3, respectively, with separations (IIU(t)I(.I))(IIIu(t)II)

E2 -E, =hw,, and E, - E2 =fAW 2 ; the fields are

represented by number states with photon num- [X W(4 +4')]V(t),
bers n and n' for fields E and E', respectively.
For adiabatic pulses x and x', n and n' take on the where 11(t) is the collision interaction which is
instantaneous values. diagonal in the atomic bare-state basis. V(t)

In the weak-field limit, from Eqs. (4.1), the = 1IU()i2)- (I1 IU(t)I1) and V'(1)= (31U(t)13)
dressed states II), 1II), and 1111) are composed - 2iU(t)I2) are the collision-induced relative
almost entirely of only states li,n,n'), 12,n -1, energy-level shifts between states 1,2 and states
n'), and 13,n -1 ,n' - 1), respectively, with some 2,3, respectively. The off-diagonal matrix ele-
small corrections; their energy separation are ment (IU(1)IIII) is responsible for the "direct"
approximately Ell - EB= -A, E, - E1 7 = -A', and (I -III) excitation corresponding to two-photon
E111 -E 1 = -(A +A'); during a collision, the time absorption in the bare-state picture, while
dependence of EB, E•', and BE" are almost the (IIUQ)I I) and KIIU()IIIIl) form the chain for
same as E,, E2 , and E3 . Thus, the instantaneous "stepwise" (I - II - III) excitation. By studying
resonance points in Fig. 2(a) (i.e. , •to, IrT, these matrix elements we can better understand
and 'TO) are transformed into crossing points as dominant excitation processes in different regions
shown in Fig. 21b), and a physical picture of of detunings. It is clear that when IA + AW
CARE can be established similar to that of or- % IA, A'1l, the direct process is the dominant
dinary (radiationless) inelastic atomic collision, one. When 14I (or A'1) is smaller than the other
which has been under active research for several two detunings, Eq. (4.3) suggest that the "direct"
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and the "stepwise" processes have comparable these four channels are
contributions. However, as we shall see later,
cancellation between the two processes occurs, . III)III)
and the stepwise process remains dominant. This To stepwise
will be seen when the detailed calculations are I)7I III1o sew) s
given.

In the above discussion, the effects of the col-
lision-induced curve crossings (i.e., of the col- II) ig III)' "• III direct,
lision-induced shifts of the dressed states) have direct,
not been included. As discussed earlier, the
crossings are particularly important when the
detunings are large, corresponding to large sepa- where the times below the arrows correspond to
rations between the dressed states. When the de- the crossing times shown in Fig. 2(b) and indicate
tunings are small (corresponding to small-level when each transition takes place. Each of these
separations between the dressed states), however, four channels contributes to the II)- IIII) transi-
the crossings do not provide major contributions tion amplitude, and interference between theem
to the excitation, since Fourier frequencies are can exhibit interesting phenomena. In a recent
induced by the collision to cover the energy mis- article, 7 we have demonstrated that this interfer-
match. To show the importance of curve cros- ence effect gives rise to an oscillatory structure
sings, we choose, in the remainder of this sec- in the total excitation cross section as a function
tion, to discuss only the case where all the de- of the active-atom-perturber relative speed when
tunings are in the Q region, since an interesting the crossings are well separated and the inter-
Interference effect occurs in this limit, atomic potentials are such that the "stepwise"

The interference effect is better described using and "direct" processes have comparable contri-
a classical-trajectory approximation of the col- butions to the trans.tion amplitude. This effect
liston event. In this approximation, crossings, is similar to that discussed by Rosenthal and
as shown in Fig. 2(b) In the time domain, occur Foley ,D regarding He-He' charge-exchange in-
at corresponding internuclear distances R(ro) elastic collision in which the atom-ion interatomic
=RC,, R(To)=Ro, and R(ro')=Ro. For collision potential curves are similar to those of CARE in
impact parameters such that the closest approach the dressed-atom diabatic representation dis-
between the active atom and the perturber is sinai- cussed here. In this paper, we provide a detailed
ler than R0 , Re, and R•, all the crossings occur calculation io supplement the discussion in Ref. 7.
during the collision. For larger impact param- This interference phenomena is quite general and
eters, some or all of the crossings are not in- should be expected to occur in many systems
duced, and i ie excitation probability is reduced where excitation is possible rta several channels.
(as compared to the all-crossing case) by orders The interference effect discussed above requires
of magnitude. Hence, collisions with larger im- a special crossing corifiguration, i.e., three well-
pact parameters do not contribute significantly separated crossings occurring at RO, Ro', and R1'.
to the excitation cross section and can be ignored. Since the existence of crossings and thcir pusi-
Consequently, we consider only the collisions wvith tions and slopes depend on the interatonic poten-
impact parameters small enough to induce all the tial as well as the detunings, other crossing (on-
crossings. Furthermore, since the radiation figurations may occur leading tc different mavii-
pulses are assumed to be adiabatic, the atom- festations of the interference effect in the total
field system is in its dressed state II) before the excitation cross section. In this paper, a treat-
collision (which comes from adiabatic following of ment for the general case is given, and results
bare atomic state 1), and only the dressed state for special cases follow.
III) will adiabatically follow the pulses back to We note that the interference between the step-

bare atomic state 3. Hence, calculating the 1I) wise and the direct processes occurs even in the
- 1I1) transition probability is equivalent to cal- case of small detunings. However, the interfer-
culating the 1 -3 transition probability. ence does not give rise to interesting effects such

When the detunings are large (IhA, I1'W, 1A as the oscillatory total excitation cross sections
+ A'l , inverse collision time), all the transitions discussed above for the case of large detunings be-
occur well localized near the crossings. It is not cause, in the case of small detunings, the transi-
difficult to see that there are four channels for tions do not occur at well-defined instants, which
the I) - 1III) transition to occur, two from the is required to obtain a definite phase relationship
stepwise process (I-1I - I11) and two from the di- between amplitudes arising from the steputise and

rect process (I-IlI). With reterence to Fig. 4 b), the direct processes.
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V. THE HAMILTONIAN AND THE EQUATIONS OF creation and annihilation operators of the photons
MOTION for each mode. (iii) The active-atom-field In-

The equations of motion to be derived in this teraction is given in the rotating-wave approxima-
section do not differ for quantized or classical tions by
fields. To be more in line with the discussion H -=-i•(a.R*, a,,R 2 )
in the dressed-atom picture given earlier, we 12 (

+nta(a.-'R +a*2) 52
take the fields to be quantized and use the photon- + a d

number representation; however, the calculation where Rj*, R2 +3 and R1 2,R 23 are the raising and
is carried out in the bare-atom picture. Let us lowering operators of the active-atomic states,
consider a system consisting of a three-level the indices referring to the transition involved,
active atom interacting with two external fields and C and t are the coupling constants related
and a perturber atom. The Hamiltonian of this to the interaction strengths introduced in Sec. Isyte can inercto wriength asrdcd nSc
system can be written as by x=n1 i"tand X'=n'112,. with n,n' the photon

H=IIA+HR +HA +U(t), (5.1) numbers. (iv) The effective interaction with the
where the following hold. (i) The free-atom Ham- perturber U(1) is taken to be time dependent, since

the internuclear motion is not quantized, and is
iltontan RA has three elgenstates 11), 12), 13) with diagonal in the basis of I1,n,n'), 12,n- 2,n'), and
eigenenergies El, E2, and E,; E2 -E1 =1fW2 1 and 3,n - 1,n' - I) (eigenstates of IIA+HR),
E3-E2=hIW11. (ii) H,,=hwa'a, +hw'a*,a•. Is the 3nlt'l(gesasfH HJ)

quantized free-field Hamiltonian describing a isthe
two-mode external field with photon energies 4w

and w', where a., a',, and a.,a,, are the usual V 2(t)= (2,n - 1,n' IU(t) 12,n - 1,n'),

V(t) = (3, ,, - l, ni' -11U() 13, n - l, n' - 1) (5.3)

(1, n,n' I U(1) 12,n - 1, n')= (2,n - 1,n' I U(t) 13,n - 1, n'- 1)= (3,n - 1,n'- iI U(t) 1, ,n, n')= 0,
IT

owing to the absence of inelastic collisions, the equations become
The wave function of the system

1, 'i(&)= CýtI) 0-, C1 = XC2 exp[(t-: Vt')dI)]
"+ C2 (t) e •j÷(- t/'. .

"+ C,(,) e-,iE3+(,, f - 'h- , , 1)w It,/ iC 2 = xCexp[-i(At -f V(t')dt')]

satisfies the time-dependent Schr6dinger equation +, expi( f.V ()]
+ X'3 exp A't - V '(t)dt , (5.5)

from which the equation of motion for the probabil-jC 3 = C~exp[-i(',-f V'')d)],
ity amplitudes C1(t), C2 (l), Lnd C3(t) are obtained,

where V(t)= V2(t) - V,(t) and V'(t)= VN(t) - V2(t)
iC1 =C I V1 (t) + XC 2 &, are the relative energy shifts of the active-atomic

iCa=XCe"i&t +C2 V2 (t) + X'C 3eiA't, (5.4) levels during a collision. All the relaxation rates
are neglected in this equation owing to the con-

iC3 = x'C 2 e' + C3V(t) dition of large detunings in Eqs. (2. 1)-(2. 4).
With the substitution Equations (5.5) will be solved using the pertur-

bation theory with the initial conditions C'1(t= _•o)
C=exp if. V,(t')dt =1, C2(t1=--)=O, and CN(t= -o)=0 correspond-

"e ( ing to a three-level atom initially prepared in
state 1. The probability of exciting the atom to

C=c2 exp(-i V2(t')dt , state 3 is given by I (t-oo) and the correspon-x ding total cross section is obtained by integrating

and over the impact parameter b,

C3 -=C3 exp(- if V 3(t')d) or I 03(t )1220bdbA. (5.6)
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VI. SOLUTIONS AND RESULTS

In the perturbation limit, Eqs. (5.5) are easily solved to obtain a formal expression for C3(t=oo),

63(t-- )= f.f X'(t) exp[-i(A't-/ V'(t')dt')] f d x(t1 )expli t- V(t')dt,/jdtdt, (6.1)

0 f [ (At V0 t
where an overall phase factor has been suppressed since it does not change the probability 6C3(t =cc)f.

Equation (6.1) has to be evaluated using different techniques in different regions of detunings correspond-
ing to different physical situations. We follow the classification of Table I.

A. Cass A, B, C

In this group, A is in the I region. We integrate by parts the t, integral In Eq. (6.1), neglecting the term
containing dX/dt owing to the conditions (2.1)-(2.4), and obtain

6C(t=o)= ' frX(t)X'(t)expl-I(A + ')t- -d

- ~ ~ ~ ~ ~ ~ t V×o)l dt'(~epdi(t -(6.2)'+V'(')d')

+ Qx'(t)exp[-i('t- f V'(t')dt')J f X(t,)V(dt) (6.2)0 ~ L I

Since x(t) isa constant x0 over the range of V(i), and hA T , I, we can take x(/) out of the ,. integral in
the second term of Eq. (6.2) and set ellll 1. One finds

t,(t =o0)={ f (t)x'(t)exp[-i(&+,1')t f [V(1ji'(t)) +t

+~ to thisx [i Yt V'(1')dt')]Jde} (6.3)

region, which are common to all three cases A, B, and C. Further evaluation of Eq. (6.3) involves the
other field, E'(t), and the other detunings, A' and A + 4'.

1. Case A with 0" = 0 + 0'. Equation (6. 5) exhibits some in-
teresting features. The first term dominatesIn this case, all the detunings are in the I region, when IA' I Al14, IA + A' I, and only the impact

We use the same technique used to obtain Eq. (6.3) phe asit w t 1 transton t apparsfromEq.(6.2 toevauatetheintgral inEq.phase associated with the 1-2 transition 6 appears.
from.Eq. (6.2)y, wentoev ate te patels once E. This suggests that the collisionally enhanced ex-

citation to state 3 is determined by the collision
each of these integrals, neglect the terms contain-
ing the derivatives of x(t) and X'(t), replace e"11, rate associated with the sc-2 transition only. Whene"'at, and e"1( 'a"t by 1, and set ('QX(/)=X to oh- a<41 1+ a' 1, the second term dominates,
taindthe exitat bion a ndset tooand the only relevant collision rate is that as-

sociated with the 2-3 transition. From the point

I ( =)ei 1 . .e'f of view of CARE, these two terms can be regard-
\AA A'"A- A') ed as "stepwise," since no collision rate associat-

where 0 =f.b: V(t' )dr' and 9' =fj'..,/'(t')dt' are the ed with 1-3 transition is involved. When IA+A' I
,I A I , IA'I , however, the third term dominates,usual impact phases associated with pressure<<[, 4[,hwvrtetidtrmoines

usualenimpact phaes. asocThed wmith dpresdsureindicating that the "direct" process is responsible
broadening theories.1 0 The amplitude depends on for the excitation. When I A 1, IA'y I and JA + A'1the collision impact parameter b, implicitly frteectto.We 4,1' n 4 '
through V(i) and V'(t). are comparable, contributions from both the "di-

rect" and the "stepwise" processes interfere with
The excitation probability is obtained by squar-Ing Eq. (6.4):eahoer The excitation cross section is obtained by in-

2 '2 / 2(1 - cos8) 2(1 - cosO') tegrating Eq. (6. 5) over the impact parameter
16 3(1 = 1o)2 XXo T 7A'2(a + A') -+& [i.e., Eq. (5.6)1:

2(1-cosO) (.5) 4X A B C
-4'(A+A')2 ]r' AAA0A \ A +A (6.6)

AA ( + __ 7ý _+I
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where that t = 0 is the time of closest approach between
the active atom and the perturber.

A=J (1 -cosO)bdb, Apart from the factor x,/A, Eq. (6.8) takes the
-o form of the two-level result,12 and a standard

B = (1 - cos')b db, treatment for obtaining the total excitation cross
Scssection can be used. The excitation probability

is obtained by taking the square of Eq. (6.8)
C=J (cos6" - l)bdb. k5_(t = o)I= (X2XI2/2))(,/a')4 cos 2 (pI+ I), (6.9)?

This result does not specify the type of interatom- from which the total excitation cross section is
ic potential. For a given potential, A, B, and C chculated using
can be calculated analytically or numerically. For a
van der Waals potentials with the straight-line- a=f ICJ(t=_)I22nbdb. (6.10)
trajectory approximation 0

V(t) = Cvw/[R(t)] The upper limit in this integral has been changed
to R'o, the internuclear distance at which the in-

and stantaneous resonance for the 2-3 transition oc-
curs, since for collision impact parameter larger
than Re, the excitation i- negligibly small due to

with R(t)= (b2+v2 t2 )" 2 , analytic results can be lack of crossings and Eq. (6.9) fails to be valid.
obtained, Equation (6.9) diverges as the impact parameter

4______ C3•2/5 approaches R,; however, Eq. (6. 10) remains fi-
a= ( 7+ • - )(-r(-,)cosin) nito since e' varies as (b -R, 2)"'. The cutoff

at R' may lead to an error of up to 15%, depending
tIVD 12/5 12' •/5 C ,, 12/5 on the detuning. Better results can be achieved •

A Il/s + 12/ - +A' , by numerical calculations for impact parameters

near bx R', or by a uniform approximation" spec-
(6.7) ially designed to overcome the difficulty of diver-

with gence.
For van der Waals potentials, R"=o(CVDW/&)- 6,

-r(-J)cos():-, 3, and Eq. (6.10) leads to the total excitation cross

where v is the active-atom-perturber relative section

speed and CVD WCVDW+CVDW. 1 a/2 (.1

2. Case 3
where cos 2 (4' 4 14) has been approximated by A,

SSince A' and A + ,' •.e in the Q rion, the in- and v is the active-atom-perturber relative speed.
tegrals appearing in Eq. (6.3) can be evaluated This result shows that the line shape varies as
by the stationary-phase method." The first term A&2 (since A is in the I region) and varies as
and the second term in Eq. (6.3) cancel each other JA, - ,2reflecting the fact that A is in the Q
approximately because of the condition I a IT, region. 1

<< 1. The third term yields

=(t =)= (g-iXx'/A)(v/d ) /22 cos(p'+ -6), 3. Case C

(6.8) In this case, 4' and A+ A' are both in the A re-
gion. No crossing occurs for the 2-3 transition
and the 1-3 two-photon transition at any collision

I Itdv\ 0 fo d impact parameter. Since A is in the I region
, I dV , °'V=(t')d (fA T<<1), the first two terms in Eq. (6.3) ap-

and r'• is the stationary-phase point defined to be proximately cancel each other as in case B, lead-

the positive solution of W(t')= A'. ing to the excitation amplitude
In obtaining Eq. (6.8), we have assumed that the -(t = i)x=

impact parameter b is small enough such that the A

crossings are induced during a collision (i.e., we '
neglect collisions with large impact parameter oxt'(a)exp ti to [(')dt' d .f
which do not contribute significantly to the total0

cross section since no crossing is induced), and (6.12)
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This equation is easily recognized as simply a The cross section, obtained by integrating
two-level excitation amplitude (2-3 transition) 1 (t1=2o)l2 over the impact parameter b, shows
multiplied by a factor XIoA. Results for the two- a A-2 dependence as is clear from Eq. (6.12).
level excitation probability are available from the The dependence on A' follows the antistatic wing
numerical study of Yeh and Berman2 for van der behavior. For a van der Wails potential, Fig. 6
Waals potentials and Lennard-Jones-type poten- of Yeh and Berman7 exhibits a line shape going as
tials. Also available are approximate analytic
results of Tvorogov and Fomin14 and Szudy and I &'I '-/exp(-3l A' 15/6)
Baylis" using saddle-point methods." We now
give only the essential features of the results, with 0 a constant, which is in agreement with
For details, the readers are referred to Refs. 2, asymptotic results' 4.15 to within a multiplicative
14, and 15. factor of order 1.

B. Cawes D. E

In these cases, A' is in the I region, while A and A + A' are in the Q region (case D) or A region (case
E). Since A' is in the I region, the Integration-by-parts technique used in cases A, B, and C can be ap-
plied to the t integral in Eq. (6.1) for Its evaluation.

We write Eq. (6.1) in the following form:,

63(t=o)=-f x'(t)exp[-i(A't-f V'(t')dt)]G(t)dt, (6.13)

where

G(t)= f X(t) exp[-i(Att -f' V(t')dt')] di. (6.14)

An integration by parts is performed on Eq. (6.13), neglecting the term containing dx', dt, setting x' (1)
=4 over the range of V/(t), and setting eA't• i to obtain

(= •)=..!4{e& f x(t)exp[-i(Al- f V(t')dt')]dt

- f X(t) exp[-i (t- fo[Vt') + V'(t')ldt')]dt

+ f x(t)exp[-i((A + A')t- f'[V(t')+ V'(t')Idt')]dt}. (6.15)

The second and the third terms approximately I. Case D

cancel each other because of the condition IA'j, The integral in Eq. (6.16) is evaluated using a
<< 1, and we get stationary-phase method to yield

•,(t=,o= • e,' (tc=o) = (_iXoX•/A')C~ (n/a)' /22 cos(t, + (617),
i (6.17)

x x(t) exp[-i(At fo v(t')dt')]dt where

(6.16)

where 0' f . V'(t')dt' is the impact phase"0 as- TO

sociated with the 2-3 transition. (P = -ATo+ V(t')dl
Equation (6.16) is simply the 1-2 two-level tran- 0

sitionamplitudemultiplied by the factor (41A')eiO'. and T, is the stationary-phase point of the inte-
Its evaluation depends on the region of A. grand in Eq. (6.16), i.e., the solution of the equa-
For case D (A in Q region) a stationary phase tion A= V(t). T, is taken to be positive, and we
method'" is used, and for case E (A in the A re- have taken t = 0 to be the time of closest approach
gion) a method of steepest descent"6 or a nume'- so that ir 0 are both stationary-phase points.
ical calculation 2 can be carried out. Equation (6.17) holds only for collision impact
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parameter small enough such that potential curve cal methods. We do not have to reiterate the dis-
crossings (in the dressed-atom picture) are in- cussion given in case C. Let us just state the
duced during a collision. In the straight-line- results for van der Waals potentials: Both the
path approximation, this amounts to restricting numerical method and the saddle-point method
the impact parameter to values smaller than R,, give a total excitation cross section going as
the internuclear distance at which the resonance &'- 1 a 1"7/s exp -/ 4A "'),
between the 1-2 transition and the field E occurs.
For b -- Re, Eq. (G.17) is not v•lid, and the con- with a difference of a multiplicative factor of order
tribution to the total excitation cross section is 1.
negligible due to lack of induced resonance.

The excitation probability is given by

• 3(1 =.o)[ = (x~x'oA' 2)(n/a)4 cos2 (p + •). (6.18) C. Cases F, G
To obtain the total excitation cross section, Eq. In these cases, A and 4' are large (dAIr, >> 1,
(6.18) is integrated over the Impact parameter W1' ,>> 1) and A+ W' is in the I region. This can
from b = 0 to b = R, according to the discussion occur when A and 4' are of opposite signs and dif-
leading to Eq. (6,10). For a van der Waals poten- fer by at most 1/T', in magnitude. According to
tial R0 = (CVDw/A)0•/, an analytic result can be ob- the discussions in Sec. IV, the direct excitation
tabed provided that cos1,• + whi) is approximated process is expected to be dominant. Since A + A'
by its average value + , which is a good approxima- is in the I region, large contributions to the total
tion since cos 2(p + b4) is rapidly oscillating as a excitation cross section come from collisions withfunction of b. We get impact parameters near the Weisskopf radius"

fo~o (associated with the 1-3 Interatomic potential.
Near such impact parameters, V(t)/A <<1, so that
approximations can be made to neglect terms con-

= A " (6.19) taining such a factor in evaluating Eq. (6.1).When an integration by parts is performed on the
The A'-2 and I a 1"--2 dependences in this equation I integral in Eq. (6. 1), such as the one leading
are expected because A' is in the I region and A to Eq. (6.2), a factor of V(t)/A is produced in the
is in tho Q region, second term of Eq. (6.2) and is subsequently ne-

glected. Further integrations by parts produce
2. CaseL' additional factors of V(t)/A. Hence, to a good

Since A is in the A region, Eq. (6.16) has to be approximation, the 1-3 excitation amplitude can
evaluated using saddle-point methods or numeri- be writton as

6 3 (t' V)= * f 'X(t)X' (I)exp1 (( 4+ A')t -f EV(t') +V'(t')Idt')]dt. (6.20)

Since A+ A' is in the I region, Eq. (6.20) can during a collision, even in the Q region, This
be evaluated easily by integrating by parts once, suggests that when A + A' is in the I region and
neglecting terms containing d(XX )/dt, setting A, A' are large (14 IT0 >> 1, 1A' WI T >> 1), the direct

- 1, and evaluating x(l)x'() E.s xo)'. One excitation process dominates, and the collision-
obtains induced potential curve crossings for the 1-2 and

N( =[X0 X~/a(A+ A')1- (6.21) 2-3 transitions, which occur at much smaller
internuclear distances than the Weisskopf radius,

where have only higher-order effects on the excitation
cross section. Consequently, cases F and G are

0"= 0 +0' = ('[V(t') + V'(I')d1', equivalent in this approximation.
The excitation probability is given by

In this approximation, the region of A(Q or A) _- ,
does not pla', an important role, because the con-
tribution to the total excitation cross section comes and the total excitation cross sectioa by
mainly from collision with impact parameters
near the Weisskopf radius associated with the 1-3 a-=[41xrx'/2( + A')•1f(1 -cosO , )bdb. (6.23)
direct transition. At such (large) impact param- 0
eters, no instantaneous resonance can be induced For a van der Waals potential, the total excita-



22 THEORY OF COLLISIONALLY AIDED RADIATIVE... 1413

tion cross section is given by the direct two-photon line shape can be deter-
4__2X_ 2 (3r v \2/5 /r(¾O\ mined. Moreover, this further restriction of

I - -(_ c051-6, detunings makes th'ý mathematical treatment to
a62 (a,+ a')2 8V ) I be given below much simplified and equally ap-

(6.24) plicable to both case H and case I.
If the condition IA + A'I << I A, IA I holds, the

rCV +instantaneous resonance for the direct (1 - 3)
constant for the 1-3 relative potential, and transition occurs at an internuclear distance (R#)
-r(-•)cos- 3. much larger than that for the 1-2 transition (R,)

The line shape varying as A.(A+A')" is typical or the 2-3 transition (R') (i.e., R">>R,R").
of the impact region when the direct excitation pro- Thus, in the straight-line-path approximation,

cess is dominant over the stepwise process. The for collisions with impact parameter b such that

line exhibits a A"2 rather than exponential A de- fo> cl> .... ,onl th im3act stanam nereson-

pendence, even though A is in the A region; in RO b >oso, only the 1-3 instantaneousreson-
ances occur during a collision. Collisions within

some sense, the direct excitation serves to break ange of ime a major

the adiabatic following of the field X(t) on the 1-2 contrbn te totaleta rs section

transition and changes the dependence from e contribution to the total excitation cross section
ponetialto pwer aw.because of the condition Ro - R,,Re,, the weighting

ponential to power law, factor bdb in the definition of the total cross se'-

tion (Eq. (5.6)], and the fact that collisions with
1). Cases H, I impact parameters b larger than R, do not con-

In these two cases, A and A' are large (141r tribute, due to lack of collision-Induced reson-
>> 1, IA' IrT >> 1) and of opposite signs, and their ance. Hence, we can do repeated integrations by
sum (A+ A') Is still In the Q region. We further parts on the 11 integral in Eq. (6,1), each inte-
focus our attention to the region of IA+ a' + JAJ, gration by parts producing a factor I I'(1)/A • I
IA' I. This region is of particular Interest be- for the range of impact parameters of importance
cause the direct two-photon excitation process is determined by the (A + A') crossing. The excita-
dominant over the stepwise process and, by vary- tion amplitude is thus given, keeping only terms
Ing 14+ A! 1, the effects of stepwise process on up to first order in 1 (1)/A. by

CsIO~{fx(1)x'(t)exp[-i((A+ A')/ f [Vol') + V 14t

Y - 0 A

+j XWa' Wt[ VQ)/ a]exp[-ik(A + 41)t - f (V W') + V'Q )V 1)JId1 , (6.25)

Since A +A'is in the Q region, Eq, (6.25) is evaluated using the stationary-phase method to obtain

6 =,l (-iX0x'/A)(n1/") 1 22 cos(O" + 4r)[I + V(To)/A1, (6.26)

where I 1C(1-= )" 2 (4nx0 /A-a")cos2 (O )

Id(V+V') x[I + 2V(T()/ 41. (6.27)
2I -- " d The excitation cross section is obtained as usual

-(A+ A"" + I' " m') + V'(')tt' by integrating over the impact parameter, cutting
- )r T0  [/') + ,off the integral at b-Re, and approximating

cos2•0" + 46) by its average value •.For van
with T > 0 satisfyinig A + A'= V( o) + V'(r"). AsT(, TOder Waals potentials, we obtain
before, we have taken I=0 to be the time of clos-
est approach between the active atom and the per- 4r2oX- 2 Icv" II/

turber. - 3A2v Ta+ 37/
The first term in Eq. (6.26) represents the di- I A ' (6.28

rect two-photon process since it contains only xi1 +2 -) (6.28)
quantities relevant to the 1-3 transition a" and \(CvD w/IL '

4P'. The second term represents the correction where r is the active-atom-perturber relative
due to stepwise process, which affects the line speed and CVDw and CD'.w are the van der Waals
shape somewhat, and may become important when constants corresponding to the 1-2 and 1-3 rela-
1A +' I is increased, as will be shown below. tive interatomic potentials, respectively.

The excitation probability is given by This equation has been obtained in a recent
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paper by Nayfeh3 using a Landau-Zener-type ap-
proximation and discussed In connection with theA
collision-induced three-photon ionization in which A
two photons are used to excite the atom, via B
CARE, to a bound excited state. A third photon 0 E
then ionizes the atom. The present discussion P
makes clear the conditions under which Eq. (6.28)
is valid. N F

The correction term in Eq. (6.28) shows the ef- N H ,
feet of the stepwise process on the direct two- Q B
photon process. It falls off as I A + A' L1/2 for 0Z 0
fixed A, which is slower then the main part going . A

as i +A' /. It is thus easier to observe such E
an effect at a larger IA + A'I; however, the cor- XU C1
rection term cannot become larger than the main
part, since the treatment presented here ceases -2 - 0 I 2
to be valid. ' (1012sec 1

Digression. Before we go on to present the next FIG. 3. Excitation cross sections versus A, for afixed A= - 1.5 x 102 sec*4 and an attractive van der Waals
case, it is advisable to show a spectrum so that potential of constants Cyww- 1.2 x 1018• see", C,
we can have a better overall view of all the cases •-1.5x 1 01 Asec- t , and v = 105 cmsec"t, Xo=X 010V

presented so far. In Fig. 3, the total excitation sec4l. Curve N Is the result of numerical integrations of

cross section is shown as a function of A' for a Eqs. (5.5) and (5.6); others are plotted according to the
fixed A:.- -1.5 x l0l sec*' and an attractive van der equations in Table II. Only the regions, where at least
Waals potent ial with constants CyDW = -1.2 x 1018 the signs of the detunings are correct, are shown. See

A. see'-, c;,,, = - 1.5 x10U" k see". In showing the text for discussion.

such a "complete" spectrum, we cannot avoid re-
gions where none of the approximations employed cases the regions do not fall within this figure),

in cases A through I Is good (i.e., regions with , de- thv following points will help in reading (his
tuningsl -1/7,). Hence, the line shape fron nu- g, iph:
merical integrations of Eqs. 05.5) and Eq. (5.6) (1) Curves A, B, C, D, E', F, and 11, represent-
is also shown for comparison and to aid in ganing ing cases covered so far, are plotted according
an appreciation of regions of each case. Since to equations shown in Table II, and curve N is
there are many curves on Fig. 3, and each curve from numerical integrations of Eqs. (5.5) and Eq.
only has a limited region of validity (for some (5.6). For curves B, C, D, E, and F, only the

TABLE 11. Line shapes.

Case Excitation cross section

u4arx 2 12 I'n4 2/ýIOW1/
ONO 3'" ICVW CV

(3 a 4iX2 2  32r,,,•, It 2/31 1"1(-r~-j ctw l oshA'l 1

F,J A2"(N +A5) S

47fx 2 x 2 Ic{,n..r 11/c2 \f A+A'

11,1 30) -Te,ýy +\ A A

Sa' The exponential line shape from the two-level asymptotic calculation of Tvorogov and
f Fomin (Ref. 14) is adopted.

0,.
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portions, where at least the signs of detunings are more specific, an estimate of the relevant quan-
correct, are shown. titles (&I-rI,Eto.,,l,, Ir1 is given. For the

(2) The conditions in the fourth column of Table largest detuning coosidered In case J (A= -8
I should be kept In mind in reading this figure. xl03 sec') and an atomic mass of forty times

(3) The detuning, a=-1.5X1012 seec' ( AIT 0'l), proton mass, /1/1=0, *Ilxl0"2 eV, T=410 K,
is in neither the impact region nor the quasistatic v=5.04x104 cm/sec, r0 =9.85x10"13 sec, and
region. Hence, only in the cases when A is un- 1ITl,- 79>> 1. Hence, at a temperature higher
important, does the agreement with the numerical than 137 °C, the kinetic energy will be large enough
result become good, e.g., cases A, F, and G to overcome the energy mismatch (IldAI) while
near I&+&' IT,<< 1. simultaneously maintaining the condition of the

(4) Curve B has the tendency of having the same Q region (I TI, >> 1).
A' dependence with the numerical result, if we
extend the value of A' well into Q region. The . The arptinude
numerical difference comes from the A'2 varla- In this case, the instant!.neous resonances for
tion in case B, which is not a very good approxl- 1-2, 2-3, and 1-3 two-photon transitions occur
mation for A= -1. 5 x1012 sec"'. The same state- at internuclear distances R,, R', and R'', re-
ment holds for case C If we extend the value of spectively, d~uring a ýolllsion if the impact pa-
A' well into the A region of A + &'. rameter iF such that the distance of closest ap-

(5) Curve E does not have any region of validity proach be ween the active atom and the perturber
in this figure because of the sign and size of A. is smalle,: than the smallest of VQ) Ro, or Ro.
We show it for comparison. At such impact parameters, radiative excitation

is enhanced owing to the collision-induced instan-
E. CSCJ taneous resonances. At larger impact parameters,

We return now to case J, which is perhaps the some of the instantaneous resonances cannot be
most interesting case, since all the detunings are Induced, giving rise to a negligible contribution
in the Q region and the curve crossings can Inter- (compared ,vlth contributions from collisions with
fere with each other, leading to a new type of in- smaller b) to the total cross section. Therefore,
terference effect. For the convenience of presen- in the straight-line-path approximation, it is suf-
tation, we give some of the details of the calcula- ficlent to consider collisions with impact param-
tion In the Appendices and separate the discussions eterb<Rc,, Ro, or Ro.
to calculations on (1) the amplitude and (2) the The instantaneous resonance points in the time
cross section. Since the detunings Involved are domain correspond to the atationary-phase points
large (typically of the order of 1013 see"') in this of the integrals appearing in Eq. (6. 1) and, owing
case, a large amount of energy per collision to the conditions I A rI» >> 1, I I rT, >> 1, and I4
(~10" eV) is transferred from the atomic motion + A' Ir, >>1, major contributions to these integrals
to the internal degrees of freedom. Some con- are from the neighborhood of these points. Hence,
sideration of the energetics seems to be advisable a stationary-phase method, of which the details
to ensure the validity of the calculations below, are shown in Appendix A, is used to evaluate Eq.

For such large kinetic energies, a temperature (6.1).
higher than the room temperature (Ž1000 C) is Assuming that the time of instantaneous reson-
required, which in turn reduces the atomic col- ances are all far from I= 0, where the collision
lision time (T0c 1/v). This, however, will not is centered, the amplitude is given by
violate the condition for the Q region ( IdetuningsIT, >> C(t = _) = _-;XoX4 (r/a)1/ 2 [A, + A + A4,, (6.29)
1) in general, since one can keep this condition
with a thermal energy (CCv2) > idetunings l. To be where

-- i/~ss2 (r/dI )1/(fo +g0)1/ei9o("t " " [i + i-$'1fs",f + s•)~I•ei="(B%÷4)Is""1 4 '2j ;- , (6.30)
A 2= (rt/d)I2e- (4+*'14+f/4'T)[1 + s - iV2s's(f2 +g2)1/ e•2s 'h/4) ti''Z•/2J

- iYl~ss 2(•r/a,,)'/2 (f•° +g~o)t/I e~.iS. (0", s",/I[_Ils-• -Uf • ( .+g~)l,-I-=,ei-s e • "/ S'14""" ,/, (6.31)
A31/ =2(rt/r, )tfe-| A$" ,s/2-/2 (6.30)
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where
dV s' n (dV') d(V + V')(

sgn Ljg - ) s'=sgn( (6.34)

(= -AT,+ f 0 V(t)dt, q'-A -A'T +f V'(t)dt, 4"=-(A+A')To+ f 0 [V(l) + V'(l)Jdt, (6.35)
0 0

Of = tan' (gilf') ;(6.36)

gjj,f are the auxiliary functions of Frosnel integrals evaluated at zi,

z0= I(2q/n)i/(T-T 0)i, z= =(2a'/=)1/2(r )I, z= •I(2a•,/r)1/2(To- 0 )I, (6.37)

II

s==sgn(r'o- rT), s ..=sgn(7o - 7,), (6.38) above. There are two cases (a and b) of special
interest in which Eqs. (6,29)-(6.39) can be veryand T6 , •,r the positive solutions ofOP'O-- -much simplified.

A= V(I), A'= V'(), A+ A' = V(t) + V'(), a. Exactly coinciding limes of instanlaneous
resonance, rT= ro= To. All the times of instan-

(6.39) taneous resonance coincide. In this case, z, = 0,

respectively. If any of the times of irst,ontaneot'. f1--gl= =, and 0,= 'in so we obtain from Eqs.
resonances is near 1=0 (i.e., r7 0. 'Uo 0, ,;. (.29)-(6. 39),
"' -0), the corresponding time der) vative of the Al=(•/a')I/2e-u..o ''=/4. n/•) (6,40)

potential (a, a', or et") approachen 0, and Eq.
(6.29) becomes singular and is a poor approxima- Az2 (/ ) ./a)eic•t/4. • /4), (6.4 1)
tion to the amplitude. Apart from this, Eqs. A =2(•'), . (6.42)
(6.29)-(6.39) provide good approximations for the
amplitude, regardless of the type of potentials The amplitude is given by Eqs. (6.40p, (6.41),
and the ordering of e, 7•, an6 T•', as long as the (6.42), and (6.29). The contributions lrom the

conditions for this case (case J) hold. The essen-
tiat difference between various types of potentials
in determining the transition amplitude lies in the 12
derivatives and their signs at the times of instan-
taneous resonance, which are given by a, a', and
a" and s, s', and s". The ordering of T•, Te,

and T" determines the values of s, and s.. For
given interatomic potentials and detunings, these 1 8
parameters can be dete.rrmined, and Eqs. (6.29)- '

(6.39) are greatly simplified.
In Eq. (6.29), it is natural to interpret the

ter'ms containih' a' as the contribution coming

from the stepwise process and the terms contain-
ing a' as that from the direct process, since a'
and a" are associated with resonances of 2-3 tran-
sition and 1-3 transition, respectively.

Equations (. 29)-(6. 39) represent the general 0
form of the transition amplitude under the con- 4 5
ditxons of case J. They have been compared with b ( A)
the results of direct numerical integration of Eqs. FIG. 4. Comparison of P(b) vs b curves from the
(5.5) using attractive van der Waals potentials of analytic expression lEqs. (G.29)-(6.39)J and the numvi i-
constants CvDw=-l. 2 x10"8 Aksec-1, Cvw = -1.5 cal calculation [integration of Eqs. (5.5)l for an attractlv,
x×o1' Asec"l, and several detunings of the order van der Waals potential with X0-x6 10y O see4 , A -4.0

of 10" sec". For impact parameters smaller than x 103 sec", and A, -5.05 x 1013 see". Other parame-

the smallest of Ro, Ro, and Ro, Eqs. (6.29)-(6.39) ters are the same as those in Fig. 3. The analytic ex-
pression, which is singular at b = 5.57 A, was cut off at

giva very accurate results (see Fig. 4); for iun- b = 5.40 A, where It begins to diverge. The agreement
pact parameters outside this region, which con- at smallei inwpact parameters is near perfect.
tribute little to the total cross section, Eqs. numerical intt gration of Eqs. (5.5); ----- analytic cx-
(6.29)-(6. 39) are not applicable as discussed pression [Eqs. (6.29)-(6.39)].
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direct process are absent, leaving a very simple occurs before t = 0 and the 2-3 transition occrrs
form involving only the stepwise contributions, after t= 0. In any case, there are four term a in

For given Interatomic potential and A, the con- the amplitude corresponding to the four excitatLon
dition To= o--= e corresponds to a particular val- channels discussed in Sec. IV.
ue of A' (e.g., A' = (CV.Dw/CvD)*)A, for van der
Waals potentials). Near this value of A', ac- 2. The total cross section
cording to Eqs. (6.41)-(6.42), one would expect
that the direct process would be less important It is straightforward to obtain the excitation
than the stepwise process, which should be re- probability by taking the modulus of Eq. (6.29).
flected in the line shape. We find this result The resulting expressions are lengthy and are
when we numerically evaluate Eqs. (5.29)-(6.39) given in Appendix B. Only for the two special
to obtain the total cross section, as will be shown cases (re= T'= ro and To, T', 7'0 far apart) are the
later. analytic expressions given in this subsection.

b. Well-separated tines of instantaneous reson- To demonstrate the success of the stationary-
ance. In this case, the arguments off, and g, In phase method used in Appendi% A, we compare in
Eq. (6.36) become large, and since fj and g, are Fig. 4 two Ca(t=o)12 vs b curves, one from nu-
rapidly decreasing functions with maximum values merically Integrating Eqs. (5. 5), the other from
f (0) =g,(0)= ,we can, to a good approximation, squaring Eq. (6.29) for an attractive van der
neglect terms containing factors vr_ (f +g•)1 /2 , Waals potential with C2w= -1.2X1O18 /2sec"I,

as compared with 1 in Eqs. (6.30) and (6.31). = -1.5 xi018 A'sec"l, &=-4.Ox 10' 3 sec", and
We obtain W '=-5.05 x101' sec". The agreement is near
At = (IT/,)T /2 ei .0+0',/4 3'"/4( - sO) perfect except for b L 5.40 A, which Is close to

R,= (Cvvw/) 1 /6=5 57 A, at which Eqs. (6.29)-

S-iV"ss(r/)(f~+ 0)1ei ""• (6.39) become singular. The values of detunings

(6.43) used are large (IAlr,>> 1, 14! JIr,>> 1); however,
A,= (f/l)t /2014+0' +AV 4*' V ÷ /4) (1 +sX) for smaller values of detunings (~1012 sec'), good

A~ S~U a/a)1 (')Iu + ,, ) agreement (to within 10%) is still obtained.

-j1" ss 2 (r/a' )t (f~ +g0) 1 /' e'"o" / 4). To obtain accurate cross sections, we have to
do numerical Integrations of Eqs. (5.5) for im-

(6.44) pact parameters b near and larger than the sinai-
The amplitude as given by Eqs. (6.43), (6.44), lest of R,, R' , and Rt and to use Eqs. (6.29)-
(6.32)-(6.39), and (6.29) contains contributions (6.39) for smaller impact parameters. This pro-
from the stepwise and the direct process that in- cedure is used to obtain the total cross section
terfere with each other, as a function of A' in a range including the point

It is not difficult to understand the physical A, = (Cl 1.,/C..w)A at which all the times of in-
meaning of each term in Eqs. (6.32), (6.43), and stantaneous resonance coincide, for the attractive
(6.44) by tracing back the calculations leading to van der Waals potential used in Fig. 4, and for
them in Appendix A. Term A, [Eq. (6.43)] con- A=-2.0xl10" sec-. The results are shown in
tains the contributions from the Instantaneous Fig. 5 along with two curves, one with a (4 + 4')3 /12

resonance points before t = 0; term A, [Eq. (6.44)] dependence, the other with a A"3 /2 dependence.
contains the contributions from the instantaneous The calculated cross section lies between the two
resonance points aiter t = 0; and term A, [Eq. curves, which are normalized to the same value
(6.32)] contains the contribution from the step- as the calculated one at A' = (CVDU/CWVD)A (=-2.5
wise process in which 1-2 resonance occurs be- x!0 1 3 sec" in this case).
fore t=0 and 2-3 resonance occurs after t=0. From the discussion earlier, the contributions
TermsA1 andA2 contain both stepwise and direct con- from the (I -3) direct process disappear at this
tributions. For agivenorderingofrT, T', and T " point, since T,= T,= TA. The calculated line shape
some stepwise contributions will be absent. For shows no marked structure due to this "interfer-
example, when To< rTs, s= I and the first term in ence" effect; the line profile is a smooth curve
Eq. (6.43) vanishes, indicating that no stepwise exhibiting the influence of both the stepwise and
process is occuring before I=0, since the 1-2 the direct processes. If the stepwise process is
resonance happens at a later time than the 2-3 the only contributing one, the Kne shape would
transition (-,o> -T,). The first term in Eq. have followed the A!'-3 /2 curve; if, on the other
(6.44) does not vanish because Te< 7", and the hand, the direct process is the predominant one,
stepwise process can occur after t=0. The sit- the line shape should go as (A+ 4,)-/

2. Since the
uation is reversed when T,> 4o (s, =-1). How- calculated curve on Fig. 5 tends to follow more
ever, A, always survives since the 1-2 transition closely the '-31' curve, it suggests that at the
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I vicinity of A' = (CvDw[/Cvw)A, the stepwise pro- following two special cases (i and ii)

cess is more important than the direct process, i. Exactly coinciding times of instantaneous
as previously discussed, resonance, rer= d=7re. Using Eqs. (6.29), (6.40),

Simple analytic results can be obtained for the (6.41), and (6.42), we obtain

c I'= ((IX- ,ooa,')[cos)(j + 6' + si/4 +s'7r/4) + 1

+ 2 cos(p + 0' + sr/4 + s'/4) cos(¢ - q''+sn/4 -s'ir/4)]. (6.45)

Although this is a simple expression, it cannot be used to obtain an accurate value for the total cross sec-
tion for reasons to be discussed below. The time derivatives of the interatomic potentials a and a' can be
expressed In terms of the internuclear distance and the impact parameter,

a (v/2Ro)(R2 b-2)1/2 (-.)j (6.46)

& (v/2R )(R- b'-)' (6.47)

When R,=RIt (as In this case), brth a and a' approach 0 as b approaches R,(=R',), and Eq. (6.45) is slngu-
L,r, varying as (R2 - b0"'. An approximate formula for obtaining the total cross section, such as Eq.
(6. Wa), is not applicable since it leads to a logarithmic divergence. Therefore, for a certain range of
impact parameter b near R,, numerical integration of Eqs. (5.5) and of j".,Q= )I22nbdb are required
to obtain an aocurate value for the total cross section. The result for a specific van der Waals potential
and a given A is represented by a point on the line-shape curve, such as the one in Fig. 5 [the point A'(CW, 1Cww

ii. ll'ell.separated tine,'s of 6;.stantaneous resonance. The probability can be obtained from Eqs. (6.43).
(6.44), (6.32)-(6.39), and (6.29). Since the amplitude contains contributions from both the stepwise
and the direct processes, there will be interference terms in the probability. The interference effect is
best illustrated using a specific order of instantaneous resonances (e. g., Tn > ro > re). For this order
(-i'>T ro > re), the excitation probability Is obtained as

Ic (t = n) a-= (x 0Xo0)'(PS + P + P ) P (6.48)

with

Ps = 2 (1 - s sin2o)/aa', (6.49)

P, = (fo +g -)[ I - s" sin2(0" - sO8)V/aa", (6.50)

PINT -8-a-a-a sin[4+ e -of+(s+s' --s")v1 + r+0
+ sin[O + 0' + 0" + (s + s' + s")n1/4 - se

+ sin[@' + 4-" - 0 + (s' + s' - s)n14 - s9e]

+ sial€' - 0' - 0 + (s' - s" - shrt/4 + S6e]j, (6.51)

where all the quantities have been defined in Eqs. (6.29)-(6.39). Equations (6.48)-(6.51) clearly show the
contributions to the total cross section from the stepwise process, the direct process, and the interfer-
ence betwee.i the two. This result has been obtained and discussed in a recent paper,' and we summarize
only the essential features.

All the sine furctions in Eqs. (6.48)-(6.51) oscillate rapidly as functions of impact parameter b, except
the one varying as

sin[o + 0' - 0' +(s+s' -s")yr4 +s001
(the first term in P %v), which is a slowly varying function of b. On integrating over b to obtain the total
cross section, only this term survivs to yield a term representing the interference of the stepwise and
the direct processes which oscillates as a function ot inverse active-atom-perturber relative speed 1/v.

An approximation such as Eq. (6.10) is used to calculate the total cross section, yielding
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(vx~x,')2R. [A&' 1 R'+R 2R,(f +ggo) R" +R

2R R"(f+g) R1+R +2R, A
-2s IV' n-.V+V .. +-. . sin + (6.52)IldV (dV + 3 IV o~ 0- 2Ro siV

MdR/R d R ) 0' J) J
where A is the area enclosed by the three cros- the interference between the stepwise and the di-
sings on the Interatomic potential curves in a rect processes, contains a sine function which will
dressed-atom picture, and oscillate as the relative speed v is varied. It is

(s + s' - s")v/4 + s~o clear from Eq. (6.52) that the area A determines
the oscillation frequency, while the slopes at the

is a constant phase. crossing points determine the amplitudes of the
Equation (6.52) is not restricted to any specific oscillations. For given interatomic potential

type of potential, and the calculation of total ex- curves, these quantities (A and slopes) can be
citation cross section using it is remarkably changed by varying the detunings, and hence the
simple. For given interatomic potential curves freqnency and the amplitude of the oscillation in
and detunings, one can graphically obtain the the total cross section.
slopes at the crossing points and the area A en- The restriction to a specific ordering of the
closed by them. Substitution of these values into crossing times (i.e., Týo>ro'o>T,) corresponds to
Eq. (6.52) yields 9. A comparison of this cross confining the detunings in certain regions depend-
section with the corresponding one obtained from ing on the given interatomic potential. For de-
computer solutions indicates that Eq. (6.52) is tunings in different regions, the ordering will be
accurate to within 15%. different. However, it would be just as easy to

The third term in Eq. (6.52), which represents obtain the excitation probability and the total cross
section from Eqs. (6.43), (6.44), (6.32)-.(6.39),
and (6.29).

To illustrate this interference effect and to in-
SI I vestigate the feasibility of its experimental ob-

servation, we use a specific potential, as shown
,. in Figs. 6(a) and 6(b), instead of van-der-Waals-

type potentials for detunings A= -8.0 x 1011 see-'
and AW = -3.0 xl0" sec 1". The resulting total ex-

2 citation cross section as a function of inverse rel-
ative speed 1/v is shown in Fig. 7, with xo=x
=10" sec". The curve rises as (1/v)2 with equal-

*• ly spaced peaks when the speed is varied from
0o 105 to 4x0l cmsec". In terms of the laser pow-

er, the excitation cross sections are of the order
of (10"3Jol) cm2 , with 1,,1o the peak power den-
sity in W/cm2 . Thus, the interference effect
should be observable with moderate laser power.

"• .. Although a specific potential [Figs. 6(a) and 6(b)]
is used to demonstrate this effect, we emphasize
that the oscillatory feature occurs regardless of
the form of the potential as long as three con-
ditions are satisfied. First, there must be three

I I I I crossings, as shown in Fig. 6(b). Second, the
2103 - -4area enclosed by the crossings must be large

! ( 10 c ) enough to produce a phase change of order u when
FIG. 5. The total excitation cross section as a function the speed is varied in a convenient range. Third,

of A' near X= (C'VIw/Cv~w)A for a fixed A= --2.0 x 10" the stepwise and the direct excitation contribu-
sec*t . The interatomic potential and othte parameters
used are the same as those in Fig. 4. - this calcu- tions must be comparable. The first condition is

lation;-..(O+A') 3 2; ... -A'°---. The three required for there to be four excitation channels
curves are normalized to the same value at A' =A(C'VDW/ interfering with each other. This condition allows
CvDw). for a phase factor that is nearly independent of
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FIG. 7. Total excitation cross section as a function of
inverse relative speed 1/v for a potential shown in Fig.
6, with X0= X6= 1011 sec t , A - - 8.0 x 10" sec"t, and A'
-- 3.0x 100' sec t . The curve rises as (1/v)2. As the

speed varies from 106 to 4 x 106 cm sec t , equally spaced
peaks are clearly seen. In the inset, the product of the

* • total cross section and vp as a function of 1/v is shown.

LE Is determined by the interatomic potential of the
11 .-. AIM atom-atom system, which cannot be controlled
1 7 Vonce the system is chosen. In CARE, on the other

Sa-film hand, the corresponding interatomic potential (in

II El the dressed.atom picture) depends not only on the
SII atom-atom system, but also on the atom-field de-

tunings as well as the field intensities. In the
0%~ 4 %8 12 weak-field limit, one can vary the detunings to

R (A) change the level spacings of the dressed states
(b) and the positions of, and the slopes at, the poten-

FIG. 6. Interatomic potential used to demonstrate the tial curve crossings (if any) which are the essen-
interference effect discussed in case J. (a) Bare-state- tial parameters determining the CARE cross sec-
classical-field picture. (b) Dressed-atom picture. The tion. Hence, the interaction between the two col-
dressed-state energies R1,11, u are related to the bare- liding atoms can be probed in a controlled fashion
state energies 8j,;3 by Eqs. (4.2). In (a), the level sep- by using CARE, a greatadvantage over the ordin-
arations are not drawn to scale; in (b), the energies T he the -
KIAI and A6A'1 set the energy scale. A=- 8.0X 103 sece , ary radiationless atomic collisions. The three-

S=-3.0 x 1013 sec"|. level problem discussed in this paper provides
a good example of the relationship between CARE

and inelastic collisions. The oscillatory features
diptions metermine the freuenco and a iturde on- obtained in case J of the previous section for theditions determine the frequency and amplitude of total CARE cross section as a function of active-
the oscillatory term. atom-perturber relative speed are of similar na-

ture to those obtained by Rosenthal and Foley'
VII. DISCUSSION for He-He * charge-exchange inelastic collisions.

CARE, as presented in the dressed-atom picture, The He-He* atom-ion interatomic potential curves
is similar to radiationless inelastic collisions, are analogous to those of the three-level CARE
However, there is an important difference between in the dressed-atom picture [Fig. 6(b)]. The fre-
the two. In the radiationless inelastic atomic col- quency and amplitude of oscillation in CARE can
lision, the process, and hence the cross section, be varied by changing the detunings and thus the
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potential-curve crossing properties (positions as possible, although results are given for some
and slopes); such a variation is not possible in specific potentials only. Because of the complex-
charge-exchange inelastic collisions. Although ity of a three-level system and the distinct phy-
oscillation of this type continue to be discovered18', 9  sical features and mathematical treatments in
for charge-exchange inelastic collisions in alkali- different limiting cases, we classified the prob-
ion-noble-gas systems such as Nat-Ne, K'-Ar, lem into thirteen cases according to the sizes
Cs+-Ar, they are confined in systems with atom- and the signs of the detunings. These cases were
ion interatomic potentials bearing a resemblance treated in detail, except the last three cases (K,
to Fig. 6(a), and thus have limited value in in- L,M) which give rise to exponentially small ex-
vestigating the atom-atom or atom-ion interac- citation cross sections for which reliable analy-
tions. With CARE, the scope of such studies can tic approximations are lacking at the present time.
be extended. A dressed-atom picture was also given which

In case J of the previous section, we mentioned brought the CARE problem into complete parallel
that the interference effect should be observable with the problem of radiationless inelastic atomic
with moderate laser powers, without referring to (or molecular) collisions. In this picture, the
any specific experimental setup. The experiment collision-induced instantaneous resonances be-
can be performed u.ing crossed atomic beams or tween the atomic transitions and the external
a beam interacting with a gas sample. The beam- fields are transformed into interatomic potential
gas sample method works only if the active-atom- curve crossings. Such curve crossings enhance
perturber relative velocity is approximately equal the excitation, especially in the large detuning
to the beam velocity. In cases when better detec- cases, and interfere with each other, leading to
tion efficiency is required, one can use a third effects reflecting the crossing configurations.
laser to ionize the active atom from the upper ex- Some special crossing configurations yield par-
cited state (state 3) and thus detect the ions in- ticularly interesting interference effects (e. g.,
stead of the fluorescence, the modulation of the total excitat.on cross sec-

Finally, let us mention another type of oscil- tion discussed in case J). A quantitative examin-
lation which can occur in a two-level system and ation indicates that experimental observations of
should be distinguished from the present one. such effects are feasible.
The modulation in the absorption coefficient as a The theory does not include the cases of strong
function of deluning for atoms in a collisional fields which are of increasing importance and in-
environment was discussed by Mies,2° Carring- terest with the advent of high-power lasers. The
ton et. ,2" Shlyapnikov and Shmatov,22 and ob- dressed-atom approach seems to be most suitable
served by Scheps et al.2' and Bergeman and Liao. 24  for attacking such cases, and numerical calcula-
This has been attributed to the oscillatory struc- tions may be inevitably needed. The established
ture of the vibrational wave function of the quasi- numerical method used in two-level CARE prob-
molecule formed by the colliding atoms. Such lems and the analytic methods presented in this
an effect does not involve interference of differ- paper can be combined to form useful tools in the
ent channels of excitation, and is due to oscilla- investigation of these cases.
tion in the transition matrix elements.
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APPENDIX A

In this appendix we give the details of calculations leading to Eqs. (6.29)-(6.39) from Eq. (6.1). As-
suming that the collision trajectories are symmetric about t = 0, the time of closest approach between the
active atom and the perturber, we break the t integral of Eq. (6.1) into two parts, I> 0 and I< 0,

Z 3(t~) f fX'(1) exp[-i(W.' ft V'Wi)dt')]QQi)dt

-fXtep-I'-*'I)e]?td,(I
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where ,"i V(t')dr' ]dt,.
Qt) =fxQ) exp [i (44- f

Because of the condition 1Ajr,>> 1, the contributions to Q are from the neighborhood of the crossing points
i e, satisfying A= 17(i) only. Thus, for the first term (restricted to t < 0), we expand the exponent of the
integrand in Q in Taylor series about t, =-r 0 , and for the second term (restricted to t > 0), we break the
Q integral into two parts, from -- to 0 and from 0 to t, and expand the exponent about t, = -r, and 1,= 7,

for each region, respectively. The factor x(I1 ) is evaluated at x(*,)-- x0. The Taylor series is terminat-
ed at terms c( 1t1 TOY), and the integrals obtained are evaluated exactly to yield

Q(Q)=X 0oe- (0 */40,•(r/a•){l + erf[a'12 (t + r%) e"/ 4 ]J for I < 0 (A2)

and

Q(t)= X0o' -1 ( /4) / 1 + erf(a 1/2rosr /I)

+ oY0 0 #*'-'/ 0 /2/a) l' 2 terf[a' 1/2(t - To)C& t ''] - erf(-a'1 `roe'isi/4)} for I > 0 (A3)

Swhere erf is the error function and 0,s, a are defined in Eqs. (6.29)-(6.39). Putting Eqs. (A2) and (A3)
into Eq. (Al), using the relation erf(z)= 1 - erf-(z), and combining terms, we can write C3(/= o) as a sum
of four terms. Under the assumption that the crossing points are far from I=0 (W'2

%r>, 1), one of the
four terms, which contains a factor erfc[cil/r"oe-iI/ 4 ], can be neglected. Thus,

•(t =_)= -- "/a)1/ I{e(#+V/ f/ 0 0(t)exp -i(A1 - f V'(•')dt )]erf c -a'11(t + T 0)e C '/4]

+C 1 f *3(/4) '(1)exp[-i(4 t-f V'(t')dl1)]erfc[-a"2(1 - To)e'-iS/l]dt

+ e'i i(-1/4) erfc[-(Yi/2T0 e$1/] 'if.X(/)XP-i(A't -0 e V'(/')dldi} (A4)

This again, is to be evaluated using the stationary-phase method. Since the error functions with complex
arglneiut, are oscillatory functions, their presence in the integrands of the first two terms in Eq. (A4)
will modify the stationary-phase positions of these integrals. To cope with this, we use Eqs. 7.1.2, 7.1.9,
7.1.10, 7.3.9, 7.3.10, and 7.3.22 of Abramowitz and Stegun 2 to express the error functions in terms of an
exponential (oscillating) part and the auxiliary functions f,g of the Fresnel's integrals, which are slowly
varying functions. By doing this, the integrals are written in a form suitable for the stationary-phase
method. We shall nmw demonstrate the method by evaluating the first term in the curly bracket of Eq.
(A4), to be called IV. The evaluation of the second term follows exactly the same procedure.

In terms of f,g and the exponential function, W can be written as a sum of three terms. In two of these
terms a ohase of the form 0 + sa(1 + T,)' appears which is simply the Taylor-series expansion of &I
-jo t V(t')d"' at I =-ro. We transform this term back to its original form and find

IV 2e( fx(t)exp[.i(at - fi"(t' ),,t')] ,i

+ r f~~+ °i+i~ x[..( + ,,')t,-/o v~' + ,'>
+ sr2 X'(/)(f

2 +g2)1/2ei,"e exp[-i( + A')t-f Voi')V/)+ ' '(A5)

where 0 =tan'g/f and the argument off,g is
1( (v</ i)'"-2(t + TO)!I.

Other parameters are defined in Eqs. (6.29)-(6. 39). The integrals in Eq. (A5) can be evaluated using the
stationaryj-phase method. Since X' = x,, a constant during the collision, and f,g, 0 are slowly varying func-
tions compared with the rapidly oscillating exponential part, we uan evaluate them at the stationary-phabe
points, -Tr for the first term, -ro for the second and the third t. rm, and take them out of the integrals.
The remaining integrals are evaluated using the same method as that leading to Eqs. (A2) and (A3) fuo i.
Theni, the error functions can again be written in terms of f,g functions, which leads to Eq. (6.30).

The same procedure applied to the second term in Eq. (A4) yields Eq. (6.31). The evaluation of the
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third term in Eq. (A4) is particularly simple. For stationary-phase point To far from 0, the erfe function
can be approximated by 2, and the integral Iz enne by the stationary-phase method. This method yields
Eq. (6,32).

APPENDIX B

The excitation probability can always be written as a sum of three terms, PS, DD, and PITs representing

the stepwise, the direct, and the interference contributions, respectively. In the most general case, they
are

pS• 2, -(1 +s 1)ssin2 -(1 -s 1)s' sin2O'

+ (f, +g)[I - s sin2(0 + 0o - s'O,)]

+[2(f + gf)1112s sin(20 +0' + Of- s'n/4 - s'0,) - cos(/' - 0, - s'r/4 + s'O,)]

+s [2(f/+g2)]' "[s sin(20 -0' + 0' +s'v/4 - s'O,) - cos(/' + "0 - s'r/4 -s'0 1 1), (B3)

P0 =E [(XoX•01)/ act" 1(f/ +g,)[ - s"sin2(O` - So,) + 2(f2 + g)[l -cos2(0/,' 0-so-s"o2 )1

+ 2[2(f +g2')]J'/[cos(0" + 0,• - 2s0o - s"92 - s"r/4) - cos(0. - 0" - s"02 + s"ir/4)iL,

* (xo 'a') (2(f + ) ) I (B2)P I N T a k o ' , a /

x (-sIs,{cos[o + 0/+ 0"/ - (s - s' - s" )r/4 - s0ot + cos[O + 0' - 0" - (s - s' + s")n/4 + SO,&

+ satcos[O - 0' + 0" - (s + s' - s' )i/4 - SOO]

+ cos[O -0 --0" - (s + s' + s")W/4 + sOo]J

+ S 'S2s [2(f' +ge)]'/"{sin[0 + 0' - $; - (s - s')W/4 +S0O + s"021

- sin[O + 0' + O`o - (s -s )v/4 - s0e - s"0.}
- sis [2(• +gjI)1t{sin[0 - 0'- 0• - (s + s')u/4 + SO + s"O..

- sin[O -0•' + 0,. - (s + sl)a/4 - sOO - s"O01}

-sts '[2(f + •]/2{sin[O + 0" + ,;o - (s - s ")u/4 - sOO - s'0]

+sintO - 0" + 0,0 - (s + s")n/4) +So. - s'011}
+ 2ss's'[(fi + g,)(f2 +g )j''-2[cos( + 01o + 0%, - sn/4 -so0-s' 0s - s" 0)

-cos(O + 0•0 - 0+',o - sir/4 + so, -Y'0 + s" 0,)), (B3)

where

'0=- To o+ f V'(t')dt', ON'= -(A + 4')r°+ f IVot') +V'(e')Jdt',
0 0

and all the other quantities have been defined in Eqs. (6.29)-(6.39).
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Abstract. A direct, completely quantum mechanical method of calculating transition
probabilities involved in multiphoton scattering processes is described. It is applied to the
often treated problem of resonance fluorescence of a two-lcvcl atom and is used to give a
completely general description of the resonance scattering from an atom with two nearly
degent-rate excited states coupled to a ground state. Other applications of the method are
indicated.

1. Introduction

A very direct method of calculating multiphoton scattering amplitudes and prob-
abilities is described. It is a non-perturbative method which permits one to select the
information desired in the sense that no information is discarded in the formulation of
the calculation, but undesired information may be integrated out at later stages. The
method is based on a continued fraction development of the diagonal Green's function
or propagator of an interacting system given in an earlier paper (Yeh and Stehle 1977,
to be referred to as I). The method is then applied here to the old problem of the
resonance fluorescence of a two-level atom, and to the problem of the resonance
fluorescence of an atom with two excited states coupled to a ground state. In the
two-level case termination of the continued fraction at an early stage reproduces the
well known result of a three-peaked spevii im. The continued fraction is carried one
step further and the result shows that the natural line width I' is not affected by the
power in the optical regime. This result does not conflict with the existence of power
broadening and lends support to the truncation of the continued fraction. For the
three-level case the treattrent yields results for the most general case incluatng unequal
couplings and arbitrary detunings of the two excited states. An application to photon-
photon frequency-time ccrrelations is also described.

2. 'Tfhe continued fraction development

The results of I needed here are briefly stated. The derivation may be found in I.
The system contemplated consists of an atom interacting with the radiation field.

The interaction is assumed to be of the elcc'ric dipole form, linear in the field and
therefore involving the emission or absorption of photons one at a time. Let the system

0022-3700/81/111741 + 19$01.50 © 1981 The Institute of Physics 1741
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be specified by the time-independent Hamiltonian

H=Ho+ V.

Let PN be a projection operator onto a subspace of the state space of H0, so that

PN = PN [PN, Ho] = 0 PNVPN=. (=)

The last of these equations is satisfied if the subspace defined by PV contains a definite
number N of photons of whatever modes, as V acts to change the photon number by
unity. Under these conditions it was shown in I that the Green's function

1
G(EJ, V)= (2)E-H- -V

satisfies the equation

PNrG(E, V)PN GN(E, V)

PN(

E -Ho--PNVGNII(E, VN) VPN -PN VGN-1(E, VN)'VPN

where

"YN = (I - PN) V(I - PN) (4)

does not couple any state within the subspace defined by PN to any other state inside or
outside the subspace.

The form of (3) does not allow a continued fraction development by iteration
because of the presence of processes both increasing and decreasing the number of
photons present. lhowever, on writing the analogue of (3) for GN. I(E, V.4), only those
processes increasing the photon number occur in the denominator because the inter-
action VN cannot return the system to an N-photon state. Thus

ON, (R VN)= -PN+I
E-Ho-PN, VI NGN-2(E, VN + 1) VNPN. I

=P /il(E-Ho-PN~ lVN PN1A
P E_-ofl-,., 2 VN- IGNA3(E, VN,2)VN- IPN+V2

VNPN4.I) (5)

etc does yield a continued fraction development. A similar development exists for
GN-(E, VN).

Off-diagonal Green's functions or transition amplitudes can be expressed in terms
of these diagonal ones or propagators as is shown in I

PNt iG(E, V)PN = P,,,,, G(E, VN)PN, I VGN(E, V). (6)

This may le iterated to give higher degrees of being off-diagonal, connecting states with
different photon number. Equation (6) is not an expansion in power of V but is exact. It
does, however, describe a transition in terms of a sequence of steps, none of which is
retraced later in the tiansition, leading from the initial to the final state.



-~ -~'II
W7f

Multiphoton scattering processes 1743

3. Forward scattering and virtual processes

Consider the atom to have a set of states lei) which are fairly close to each other in
energy, all of which are coupled to another state 1g) through the electric dipole couplir -
V and which are not, therefore, coupled directly to one another by V. The projection
operator P, is defined to project onto the subspace of the state space of HO spanned by
the n states lei) together with a state of the radiation field in which one mode w, the 'laser
mode', contains N - 1 photons and all other modes are empty. If 6 is the dipole
coupling matrix element coupling states 1g) and lei), the effective coupling C-, with the
laser mode is N12•, where the distinction between N and N ± 1 is neglected because N
is assumed large. The transitions of concern here are in the optical frequency range, so
the rotating-wave approximation may be made. This states that photon emission is
associated only with downward atomic transitions, and photon absorption only with
upward ones. The projection operator P,, ptojects onto the state with the atom in jg)
and N photons in the laser mode.

Under the circumstances just given, the above expression for the propagator
0G(E, V) becomes

a, G(ElV)= Pr 7
E -(.) Ho-PVG,(E, V,)VP,'

The processes included are transitions to an excited state by photon absorption,
propagation in this state, and then a return to the original state by photon emission. The
only absorption process possible is the absorption of a laser photon, which must
subsequently be re-emitted, so the process is one of forward scattering of laser photons.
The fact that VG, V is present in the denominator of (7) indicates that the propagator
G0(E, V) contains absorption-re-emission of laser photons to all orders.

The propagator G,(E, V,) becomes

G,(E, V)= (8)
E -Ho-P,.VgGg(E, Ve) VXP(

g specifies a state distinct from g because V, cannot cause a transition to g. Therefore
the processes included in (8) are the emission of a non-laser photon, propagation with
the atom in its ground state, N - I laser photons, and a non-laser photon in the field, and
reabsorption of the non-laser photon. The propagation of the system in 1,) can involve
forward scattering. It is shown in appendix I that this has only a small effect in cases of
interest and it will be neglected. What is left is exactly the set of virtual processes
leading to the existence of a finite width of the excited states, or to a mean lifetime for
these states against sponta:icous iadiation (Low 1952). Thus (8) can be written as

GAE-1 VO = P,(9
G(E. E- (HE - i)' (9)

Insertion of (9) into (7) yields the propagator for the atom in its ground state initially

and finally, in the presence of the laser beam.

4. Resonance fluorescence

Resonance fluorescence consists of the scattering by an atom of light whose ft equency W
is close to a resonance frequency (,)(of the atoms. When the incidentintensity is low this
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can be treated as a single-photon process (Heitler 1954), and then energy conservation
requires the scattered photon to have the same frequency as the incident one except for
the extremely small effect produced by the recoil of the scatterer. This can be expressed
in terms of the Rabi frequency (Allen and Eberly 1975) of the atom in the field of the
incident radiation. When that radiation is weak, the Rabi period is much loager than
the mean lieftime of the excited atom, so successive scatterings are mutually indepen-
dent. When the intensity is incrased so that the Rabi period becomes comparable with
the mean lifetime, the process becomes a multiphoton one because at any instant the
state of the system in the Schridinger or interaction picture is a superposition of states
containing different numbers of incident and scattered photons. Under these circum-
stances energy conservation imposes only a condition on the sum of the energies of all
the scattered photons. Also, various scattering processes lead to the same final state, so
quantum mechanical interferences affect the fluorescence spectrum.

The spectrum of resonance fluorescence of a two-level atom has been found by
many authors using many methods of calculation (Mollow 1969, 1975, Carmichael and
Walls 1975, Smithers and Freedhoff 1975, Swain 1975, Renaud el al 1976). When the
excited state is not unique but is multiple, the problem becomes more complicated, but
has been treated in a special case by Sobolewska (1976) and more generally by
Kornblith and Eberly (1978). What is presented here is a formulation of this problem in
completely orthodox quantum mechanical terms; a transition amplitude from a pre-
pared initial state to a possible final state is calculated, and the cortesponding transition
probability is summed over all observables not used in specifying the final state of
interest experimentally. It differs from methods involving the direct calculation of
correlation functions (Renaud et al 1976) in that the transition amplitude contains all
the information about the system that exists in the specification of the system, while a
formulation which calculates the evolution of a correlation operator does not automa..
tically contain any information about higher order correlations.

The system at time t = 0 contains an atom in its ground state Ig) and a radiation field
with a single mode, the laser mode, excited to its N-photon state, all other modes being
in their ground or vacuum state. At time t > 0, a number of photons may be missing
from the laser mode and some other modes may be occupied. Neither the number of
laser photons missing nor the number of scattered photons present has a definite value
at a specified time, but under the rotating-wave approximation (which will be made) the
two numbers will be the same if the initial and the final vtomic states are the samr. In
the method to be debcribed, the coupling system of atom and field is allowed to develop
until ti scattered photons have been emitted, and then the atom is removed from the
laser beam. This does not correspond exactly to a common experimental situation
(Schuda et al 1974, Hartig et al 1976, Grove et al 1977) where the atom is illuminated
for a definite tim,, by the laser, but the difference is small if ti is at all large, and the
resulting simplification is great.

A Feynman diagram representing the process is seen in figure 1. The atom, initially
in its ground state, alternately absorbs laser photons of mode (o and emits scattered
photons of modes vi, ,2..... vi,,. The alternation is a consequence of the use of the
rotating-wave approximation in which photon absorption necessarily accompanies an
upward atomic transition and photon emission a downward one. Not shown in the
diagram are the forward scattering processes that also occur or the virtual emission and
absorption processes that account for the existence of spontaneous emission into the
non-laser modes with mean lifetime 1/r. These are contained in the propagators. The
propagator G,(E(, V) is denoted by a broken line, 0,.(L-, V) is denoted by a dotted line.
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Figure 1. Fcynman diagram representing the successive emissions of scattered photons by
an atom illuminated with single-mode light. Propagation with forward scattering is shown
by broken lines, with emission and reabsorption of non-laser photons by dotted lines. The
single line represents a free propagator.

After the emission of the ruth scattered photon the atom leaves the laser beam so the
last propagator is Go(E) denoted by a single line.

The strength of the coupling between the atom and a mode of the field is given by
2 1/2

- L-W (e2alg) (10)

if the mode is unoccupied (emission only possible) or contains one photon (reabsorption

of a virtual photon). If the mode is highly populated, the coupling j is given by

e N(,'0.1)

where the difference between N and N ± 1 is neglected. Here L' is the volume of the
space in which the field is quantised, and a is the dipole moment of the atom.
Polarisation effects can be included in the calculation by suitably specifying this dipole
coupling, but this is not done here.

As stated above, virtual emission and reabsorption of non-laser photons are
included in the propagators. It is possible for a virtual emission and reabsorption
process to straddle other processes such as forward scattering or non-forward scatter-
ing. The effect of the former is shown to be small in appendix 1, and the latter is also
assumed to be negligible. This means that the propagators occurring in later segments
of the Feynman diagram depend on the earlier segments only through the eigenvalues
of Ho that occur in them, i.e. on the energies of previously scattered photons.

The propagator Gg(E, V) occurring after the emission of the rth scattered photon
contains the eigenvalue of 11o

E9 +Nw + xi (12)
i-I

if x, = vi- & is the inelasticity of the ith scattered photon. If the atom has p excited
states coupled to the ground state, the free Hamiltonian 1H0 appearing in the next
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following propagator G,.(E, V) is diagonal and has the form of a p x p matrix
It - (N - 1)wo + l".'.. I x1 0\

0 E2 -(N- 1)to) + It. I . (13)
Ev-,p(N - 1)w + Yj.i Ix1

The couplings of the ground atomic state to the excited states are all of the form

P, VPS: = •

Pg VP, = (6, 6•, . . ., fp (14)

the former describing the absorption of laser photons, the latter the emission of
scattered photons. The emission of laser photons occurs only in connection with
forward scattering, and the absorption of non-laser photons in connection with virtual
processes.

The amplitude for the successive emission of scattered photons ia, V2,. .. , v,, in
that order is

f'(r) W I dEF(E) e-iE'

with
F(E) =. GO(E; x,, .. .x 1)[ VG, (E; x.,,- + ... + x 1) VG, (Er; x.,.. +.. +x)

(16)
X... X VG, O(E;)VG.(E; 0)]

G,, G, and Go are here no longer operators.
The second argument indicates the value of Ho appearing there. All of the poles of

F(E) lie in the lower half of the complex E plane for reasons of causality, and they all lie
a finite distance below the real axis except for the one coming from Go, which is only
infinitesimally below. At large times, therefore, only the contribution from this one
pole need be retained. It occurs at

E = E,x- N ia + x, (17)i-a

therefore

•,t'()= p(x,,,)g(x,,, + X,,,. a)... •(x,,, + x,,-, +. .. +x,)

xexp[-,(Eg +N&)+xa+...+xm,,)Y] (18)

where W (x) is the content of a pair of square brackets in (16) evaluated at the pole of Go.
The amplitude 16"-(t) corresponds to a specified order of emission of the in

scattered photons. The final state is the same for any order of emission, so this
amplitude must be symnmetrised by summing over the ti! different orders of emission.
There is a continuum of modes present in the limit L' oo so that double occupancy of
modes does not occur. The transition probability is the absolute square of the
symmetrised amplitudc, and will contain 'direct' terms in which the order of vertices in
the two complex conjugate factors is the same and 'cross' terms in which it is different.
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The cross terms will be shown to be responsible for the 'coherent' part of the spectrum
and for the modification of the side bands coming from the direct part.

The transition probability just found relates to an obscrv'ation made on tile system
after m photons have been scattered. It is possible tu make observations of a different
kind involving, for example, the sequential emission of two photons of different
prescribed frequency in a specified order (Aspect et al 1980). In this situation the
amplitude &I'V1 ) must not be symmetrised in these two photons. Such a situation is
discussed in § 7. The summation over unobserved photons is converted to an integra-
tion over the wavevectors in the customary way, namely

3R ~ f d2vk

The frequency dependencies of the quantities of interest here are all peaked in the
neighbourhood of the atomic resonance, so the above integration can be reduced to

F2 ir7 f'
with €oo either the resonance frequency or the laser frequency. x, is chosen as the
observed frequency and is denoted by x.

A major simplification is provided by the vanishing of all integrals in which the order
of the variables integrated over in the two complex conjugate factors entering the
absolute square is not the same. This is shown in appendix 2. In evaluating the
spectrum, therefore, the only ordering of significance is provided by the location of the

,observed photon's emission vertex; in the direct terms this is the same in the two factors,
in the cross term it differs in the two factors.

A typical direct term in the spectrum is

K" f dx ... dxY*(x,,,)s*(x,,, +x,,-l)... -,*(x,, + .. +X +x)

X 0 (xn.)9 (X.n + Join,-3).. (x,, +.. + X +X 2) (19)
where x replaces xI and the observed photon is emitted at the second vertex. x2 occurs

in only two factors, and on integrating over the interval (-co, 0o) one obtains

K dx ,*(x'), (x')=1 (20)

because this is simply the probability that the atom will absorb a laser photon and emit a
scattered photon somntime during the process of scattering ti laser photons, which it is
certain to do. After this, integration over X3 leads to

A(x)=K dx' ,*(xI')Y"' +x),v(x'),(x'+x). (21)

Subsequent integrations lead to further factors of unity. Because the observed photon
can be emitted at any vertex, the total contribution of the direct terms is

nA(x) (22)

neglecting the anomaly of the contribution when x is the inth photon emitted when
instead of A (x) one obtains , *(x)9 (x).
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A typical cross term in the spectrum is

K M-1 1dx2 ... dx,n,*(xm)S*(x,n+x)9*(x, +x+x,,n-I)... 9*(x,, +x +... +x2)

XP(Xn,)S (x,1, +Xn-.)....( +...+Xnti+x)... .p(x,,+... +x2). (23)

Here x appears I places later in the sequence of ,* than in the sequence of 9.
Integrations over x2 up to x,,,-,-, lead to factors of unity. Integration over x,,,- leads to

.E(x)= K dx'y *(x'+x)y(x')•(x+x). (24)

After this, integration over x,,,-I+i leads to

H(x)Kf dxS(x t + X)y(x ). (25)

Note that (0) = 1, and H*(x):z H(-x). Altogether I - 1 such factors occur followed
by

E'(x) = g (x1' ,f*(xD)Y*(x'+x)Y(x,)

=E*(-x) (26)

unless x occurs in the left-most factor f*" when E'(x) is replaced by 1t(x)9 *(x). For
large ti this makes little diflerence and is not taken into account.

For a given separatiun I of the occurrences of x in the factors y* and y there are li -!
positions of x, and 1 can range from I to ti - 1. The total contribution of the cross terms
is, therefore,

2 Re (EW *(-x) n(i- (27)

The factor 2 includes the contributions from terms in which x occurs later in the
sequence of y than in that of y".

The spectrum P(x) of a scattered photon observed without regard to the frequencies
of any other scattered photons can now be written as

I r-
P(x)=A(x)+E(x)E*(-.:)- > (in-l)(H(x))V-'

1 m+ Ei(-x)E*(x) O-- , )(1(-x)) (28)

in i~t

This depends on ti only through the sums. These sums contribute, for small X, a very
sharp peak whose height is proportional to )n and whose width is proportional to 1/hi,
as shown in appendix 3. For in -> o this approaches a delta function, and is the
'coherent' part of the fluorescence. It is satisfactory to obtain a finite peak for a finite tn.
As in-1o, the duration of the experiment becomes long without limit and then an
infinitely sharply defined fi-quency first becomes physically possible. The spectrum is
symmetric about x =0 or ' =.
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5. Two-level atom

This case is very familiar, so it will be discussed only to the extent that it clarifies the
application of the method of calculation. The projection operators are one dimen-
sional. Defining the detuning 8 by

8 = -oo = co -(E, -Er) (29)

the function 9 (y) becomes, setting Eg + Nw 0,

'T (Y) (y8+i)y '30)

The denominator is quadratic in y so the poles are readily located analytically and the
integrations carried out. From (2 1) one finds

K = F/i'e (31)

which is the result to be expected if f' is the coupling responsible for the decay
characterised by I'. Introducing the quantities

X- 2) +[(8; + 4• -=102+4 +2482 )] 32

Y = /X(32)

it is found that

4Fx 4r'2 • l" (r- Y)/I" (r4 Y)/F
A (X I + Y2)(XR2+l':72)(2+-r- R +7 T Y

SI X2 -Fr -2X(x-X) X2-"' 2 +2X(x+X)\(3
X +'F• (x - X)!-+ F(x'X "-+ •-+, ) (33

4i4EI'(x - iF)n(x)=[(x -iF)2 X- X'ffL(x -ir), + F)] (34)

E(x) = 41, 2
4f

3 - x2 + (8 - 3i1')x - 21(1'+ iS) (35
E(X - il')2 - X_ [(X-•i)lT -1 Y ](X2 + Fr)(i,,- y'J

Inserted into (28) these yield the familiar thiee-peaked spectrum. The contribution of
the direct terms, A(.:), consists of four Lorentzians, two centred on the laser frequency
W, which reduce to tiree at exact resonance, 8 = 0. In this case the central peak is twice
as high as the side peaks and of the same width. The peaks are separated by X which is
the Rabi frequency 26 corrected for detuning 8 and damping F. This is the spectrum
obtained by Smithers and Freedh,,tf (1975) ard Smitihers (1975) and later corrected by
them to include the contribution coming from the cross terms. These add the coherent
peak and modify the side peaks to one third the central peak height and three halves ihe
central peak width. This can be seen in the high-intensity limit. When , >> 8 and F, the
direct term becomes

A f ( + 2 -- 1 r (36)
4 +l (x-2C)2-if F.42)+F
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and the cross terms in (29) yield, except at x 0,

"4 (x-2•) r' ((x+ 2-)f +1' 2 ().1+ ( x (+ 2)-+(r)2  (

Thus the cross terms replace the sidebands given by the direct term A(x) with wider,
lower ones and supply the coherent part at x = 0 consisting of a sharp peak whose
limiting form is a delta function, as shown in appendix 3.

"6. Three-level atom

The level scheme is shown in figure 2. The detuning 8 is measured from the lower level
E, which is A below E.. The coupling of the excited states to the ground state is
measured by , 'I. The matrix Io- ir is two dimensional and the couplings are

PC VPr up, w"C:o (38)

-9

Figure 2. Level scheme of an atom with two levels coupled to a single ground level,

The propagator G,(E, V,) depends on Ho-il'. For r to be non-diagonal in the
two-dimensional subspace of the excited states these states would have to be coupled by
the emission and reabsorption of photons. They would have to have the same angular
momentum and parity quantum numbers. Within the electric dipole approximation
they cotld differ only in principal quantum number which would make them widely
separated. It is natural, therefore, to assume that 1' is also diagonal in this subspace.
From (9), then,

(E Eg-No0+8-+iP 2  0 P

a, (E. VO) P,( -EE- E, - Now + 8 + il, 0)-

P E - E, - No• + 8 -AX + iIr, 0

p,0 E- - ,- No) + 8 + ir) 0.?
0 TP-E,-Na +-+ir. P9= (39)

(E- E•- Nw•+ •+ iI'r)(E -iEg - Nco+ -. A+ iF 2)
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for the leg before the emission of the first scattered photon. Later legs are different in
including the inclasticities of previously emitted photons. The function ,y(y) now has
the form,

S ((Y) Y+8-A+iF2)+ E.('+8+il'1 )
(y + 8 + ir')(y + 8- A + iF2)

+ ,+ -A + i 2)+ o(ys + iro)\-'
x(Y (y T + iF)(y +8 -A+i AT ) i

416(6 +8 -A + il'0)+, 2(y +8 +ir,)
y(y + 8 + iF1)()' + 8 - A + il' 2) -[• (y +8 - A + ir 2) + T (y +8 +il' 1)'

(40)

The denominator is cubic in y and it is not practical to locate the poles analytically. As
• 0 this approaches the expression (30) for the two-levcl atom.
Some results for the spectrum resulting from using expression (40) for 9(y) in

evaluating (28) are shown in figures 3,4 and 5. The poles needed for this evaluation are
located numerically. This spectrum has also been calculated for a non-diagonal r
matrix (Yell 1977), for one with all elements equal. The result is a single sideband
spectrum for tuning midway between the levels, a result quite distinct from figure 3 and
from that of Sobolewska (1976). This suggests that observation of resonance fluores-
cence from a three-level atom of the kind considered would provide a way of
determining any off-diagonal character of r.

For unequal couplings the spectrum is more complicated, showing three sidebands.
These can be interpreted as sidebands separated by the Rabi frequency 21, promnient
when the laser is tuned near the lower excited state, as sidebands separated by the Rabi

0 8 16
V-W-X

Figure 3. Three-level alnt fluorescence, with variation of detuning at when 1 =f2 3,
A = 6, 1', = I'2 = 1, in 15. All pectra ale symmetric about =x 0.

/
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i.5
/

.4

08 16

V-LJ:X

Figure 4. nThre-level atom fluorcscence, with variation of detupiug S, when f, 3, A
4 6. r,*i, r2  0-11 'IndIn 0-S

8•~ C L=ý 3,F3 .lz=(.I•z 5

i3
C;

01
0 816

Figure S. Threc-level atom fluorescence, with variation Of coupling 42, when f,= 3, A =6,

81 =3. r, 1. 1'2 =4240'.2 tit 15.



Multiphoton scattering processes 1753

frequency 2C2, prominent when the laser is tuned near the after excited state, and as
interferences between the amplitudes for these two kinds of scattering. In general, the
number of sidebands agrees with a dressed-atom picture (Cohen-Tannoudji and
Reynaud 1977), and the details of the spectrum depend on the detunings and couplings
involved.

The resonance fluorescei..-e from a three-level atom has been studied by Kornblith
and Eberly (1978) using a very different method which seems to use the diagonal
character of 1' in an essential way. They also consider polarisation of the scattered light,
which could be done here but has not been. Their results for equal couplings show two
sidebands above and below tlhe central peak, just like the present results. They report a
disagreement with the present authors, a disagreement arising from a comparison of
their results with results calculated with a non-diagonal F and presented at the 1977
International Conference on Multinhoton Processes at Rochester. The source of the
disagreement was not known until recently.

7. 'To-photon frequency and time correlations

Two-photon correlation experiments have been done in connection with resonance
fluorescence. One was the 'antibunching' experiment of Kimble ct al (1977) showing
that a single atom which has just emitted a scattered photon cannot immediately emit
another. This had been predicted by Kimble and Mandel (1976) and by Carmichael and
Walls (1976). Another is a correlation experiment involving detecting photons occur-
ring in the two sidebands of two-level resonance fluorescence with a delayed coin-
cidence (Aspect et al 1980). Aspect et al show that photont corresponding to the two
sidebands tend to come out in pairs with a small time-delay, and that the photon
corresponding to one side band preferentially precedes the one from the other
sideband. They give a theoretical account of this in terms of perturbation theory.

This particular experiment has a remarkably simple description in the formulation
of resonance fluorescence given here. The transition detected is one in which a photon
of frequency ,A = W +.A, is emitted, and then a photon of frequency pn = w + X11. I, and
Pit are chose n to be the two sideband frequencies, and the laser is detuned by an amount
large compared with the Rabi frequency 2f and with the natural linewidth F. Consider
the two photons vA and Pit to be emitted successively, say after v'. Then the amplitude
(18) contains the sequence

O n (),... 9(X,+... + X2) (X, +. X2 + X)

× (x4,, +..X.+X2 +Xn+-XA),(X,, +.. .+X2+X+AA+ X1) (41)

which must be symmetrised in all photon variables except xu and XA, which must retain
their relative order, and it is assumed for simplicity that they are always successive. On
squaring there will be direct and cross terms.

The analogue of P(x) in (28) is now
ni•2

P(xA, x11) -(XA, xmm + ](XA, X11) 9*(-xB, -XA)1 (ti - 1)(H(xA +xt))-'
In i.

+:-, (in - 1)(H(-xk-XA))'-'. (42)
Fit
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For a two-level atom one finds that

A(XA, xn) =K Jdx' ,*(Xe),*(XI +Xnl),*(Xe +XU+XA) (X')9(X'+Xo3) (X'+Xn+XA)

X(x~lx+ - i YY +i)i(x- Yx) (xi, + xA-+Yxi,+x + i rP)(xo + + i(- 1))

+(_X + A' - i Y')(-Xrs)('Xu + X + iP)[A.xIt + 4'r- 1'))

(XA~ + X -i Y)XA(XA + X'+ il)XXA + i4'- l

-_1 XA +X -i Y)(-XH XA)(_X11 XA +I~X +iI')[-X1 ll XA i(l'- Y)]

(-X.A+X-i y)(-XA)(-XA +X +iP)[-X+ il-Y]

It is readily verified that the poles at XA = 0, xi, 0 and XA + X1, 0 have zero) rcsidues.
There tire no singularities in A (XA, X11) for physical v'aliacs of the variables.

t.(XA, x£n) K fJ dx'y (x)Y Wx'+ XI)& (X'_ + 1 + XA)9*(XI + X11 + XA)

Fx- 1 )x+iirIY

x
(-XA + x-+ r)L-XA +i(r- Y)](-XA -Xl x11K+ ii'[-XA-X -x1+i(- Y)]

+ (X, Y) _),(-X, -Y). (44)

To compare wvith the experiment of Aspect et al (1980) one sets

XCA+XII=1 n small

and

a>> 1>'

so that

X-8S

Y - '(1 -2/8.

Just as in expression (28) for the single-phioton spectrum, the sums in (42) lead to a
coherent part of the two-phioton frequtency correlation at XA + X11 0. To study this one



Multiphown scattering processes 1755
looks at the value of eO(xB) jAC(-Xn, xIJ12

•e48" 1 1
V0(xn0) 4r2 (xi + 8)2 + X2 +2 (45)

The value of a in the expansion H(q) 1 +ia-q+. is given by

a-=.- -- + (46)

From appendix 3, equation (A.12), the coherent part is now seen to be

eo(Xn)- 21 a -- eo(x)(7). (47)

The coefficient of 8(ij) has maxima as a function of xn at xn = 0 and at x.= -S. The
value of XA associated with the former is XA = 0, and so this is just a reappearance of the
coherent pat t of the single-photon spectrum. The value of XA associated with the latter
is xA = +S, so that the first photon is in the upper sideband and the second photon in the
lower sideband if 8 > 0. The maximumn with the two photons in the sidebands is smaller
than that with both photons in the central peak by the factor (242/62). This coherent
part has an interpretation similar to that of thc single-photon spectrum coherent part.
Emission of a single photon with x = 0 does not disturb the energy balance and
amplitudes for this emission can interfere even when widely separated along the
sequence of emission vertices, which yields the coherent part of the spectrum. Emission
of pairs of photons XA andl x1 with XA, xI • 0 but XA + X11 = 0 is a process of higher order
which also preserves the energy balance, and therefore snterfet ence over large intervals
can occur akid yield a coherent part, but a smaller one because the process is a
two-photon process. These amplitudes are largest, of course, when the two photons are
in the sidebands of the single photon spectrum.

The direct term AUM(x^,x 1 ) has a very similar behaviour, but it is less dramatic
because it contains no delta function and because at large detuning the coherent part is
dominant.

In the experiment of A,,pect et al (1980)
8/1=1.2x10' f/F- 1.2 x 103

so that conditions (44) are well satisfied, The time delays employed in their delayed'
coincidence measurements are of the order of, or less than, 1/I' so that the restriction
here to successive photons is justified. Their 8 is positive so the early photon should be
the high-frequency one, as is seen in their figure 2(a). The width in XA+XIJ should be
extremely narrow, but that of xn separately is I' so there is no conflict with their result
shown in their figure 2(b).

For longer times the probability that the observed photons are emitted successively,
will decay more or less exponentially, iand on integrating over the modes of any
intervening photons, the correlation will be expected to be nvmch reduced. The lack of
an observable I ise time in the correlation in; dtue to the large detuning which makes the
Rabi frequency large even though the transition probability to the excited state remains
small so the atom quickly becomes as excited as it ever does. Near resonance the Rabi
frequency is smaller because here it depends mostly on the coupling, not the detuning,
and the rise time can be detected. This is just the antibunching eltect mentioned above.

/
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8. Discussion

It has been shown how a conventional quantum mechanical approach involving only the
calculation of transition probabilities can be used to find the spectrum of resonance
fluorescence and other features of multiphoton scattering processes. This has the
advantage over sone other calculational methods of making the dynamical basis of
vai ious approximations clear. It also has the advantage of being extendible to aspects of
the problem other than the spectrum without new formulations. For example, the
two-photon correlation experiment just decided by Aspect et al (1980) in which
successive fluorescence photons are shown to have inelasticities predominantly of
opposite sign is seen from (18) to result from the fact that propagators contain the sum
of the inelasticities of already emitted photons in the denominator, and that the
amplitude for successively emitting photons with small resultant inelasticity will exceed
that for the emission of successive photons with large resultant inelasticity. This
experiment is a convincing demonstration of the multiphoton character of the entire
effect. Another such demonstration is the existence of the coherent spike in the
spectrum, which requires interference between amplitudes for the emission of many
photons for its emergence.

It can also be determined how many components the fluorescent spectrum should
have. If there are p excited states, here either I or 2, the projection operator P, will be p
dimensional, and the reciprocal of HO - il' in (9) will have a polynomial of degree p in its
denominator. The function 9(y) will then, in general, have a polynomial of degree
"r = p + I in ), as denominator. All the functions determining the spectrum are integrals
over y of products of 9 and 9*, which can be evaluated using the residue theorem. The
result is a sum of termns with polynomials in x containing f:ctors of the form (±x + r* )
where the ili are the poles of y'(y), and similar factors with - replaced by 71*. A par-
tial fractiot, decomposition leads to Lorentzian terms with denominators *-x + * -
etc. These terms lead to lines centred at tRe(q, - i7j) where it now does not matter
whether the q are starred or not. There are, therufore

2Xr(r-)
2

-lines arising from terms i -Aj. When i = I the line is centred at x = 0 and has a width
which may vary with i. There are, therefore,

Sr(r - 1) + I =p(p •.1+

lines to be expected in the resonance fluorescence spectrum if there are p excited states
coupled to the ground state, or better, if y (y) has a denominator of degree p + 1.

In the three-level atom case, if 1' is chosen to have all its elements eqiial instead of
being diagonal, • (y) 'accidentally' acquii es a quadratic denominator for tuning midway
between the two resonances and, as mentioned above, this yields a three-peaked
spectrum even from a three-level atom (Yell 1977).
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Appendix 1

There is an effect on the natural linewidth of an excited atomic state produced by the
presence of a laser beanm. In the absence of a laser beam the natural linewidth 1' (half
width at half maximum) appears as the imaginary part of the sum in the denominator of
(8),

P, VOgG(Eo, VV) vP - - (A.1)
k Eo-Eg(Ni1)&)okI(A)

where no forward scattering is included because of the absence of the laser beam. On
converting the sum into an integral through the prescription

V d'"k

and inserting the standard ie to define the treatment of the pole, one arrives at
('2"sd (2t 2 1e2

r - f Vdk d(cos 0) d0--! ,- (celdlg)I2 . (A.2)

The real part, the level shift, is in this approximation formally infinite and is neglected as
usual, or is absorbed into the eigenvalue IE.

When forward scattering is included in the propagator Gg(E 0 , VI,), ther.

- 7rr df E- -( -E-N-1 -kl -- [- E, - (N - 2)to -I, I]_ -

= _h (.Im d'k + (04f I-+f£

= r, + 1r (A.3)

where fl= (82S+ 4ý2) )/2 is the Rabi frequency. Then

F= -(o+28 -fly')3

(A4)

1 2 = 2 (&o) 4- 28 2 "fl)
3 F.

The intensity-dependent width is
2 2

rw~) 1+7 + (AM)
&J 0 (00,

There is no 'first-order' effect on the width, and where the 'second-oider' effects are
appreciable the approximations such as the frequency independence of the matrix
element which have been made are questionable.

This result does not contradict the existence of power broadening, where the width
of the absorption spectrum increases with increasing laser intensity. It only shows that
the parameter F is not itself strongly intensity dependent, so that the width of the central
peak in resonance fluorescence is nearly intensity independent, as is the case experi-
mentally. The width of the absorption spectrum does increase with increasing incident
intensity.
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Appendix 2

Let xA, x, be two photon variables to be integrated over which occur in different order in
the sequence of y * and of ,a in (17) or (21). If xk appcars further to the left than xi, then
x, appears only in the combination xk + xt. Let

U= Xk+XI v x& du dv = dxk dxi. (A.6)

In the sequence of y*, then, if xk is to the left of x, these two variables can be replaced by
u, v. In the sequence of 9, x, appears alone rather than xk, so these variables can be
replaced by u - v, u. Thus in the •*, v appears as + v, in the y as -v. The poles of Y (y) lie
in the lower half of the y plane for reasons of causality, so all the poles in the integral
here lie in the upper half of the v plane. On evaluating the integral by closing the
contour in the lower half plane, zero is obtained.

Appendix 3
The coherent term in the spectrum given in (26) comes from the cross terms. From the

definition of H(x) in (23) it follows that the expansion of 11(x) about x = 0 has the form

H(x) = 1 + iax + bx +... (A.7)

with real a and b. Similarly E(x)E*(-x) has the expansion

E(x)E*(-x) = Fo + ia' x A- bx +... (A.8)

with real to, a', b'. The first sum in (26) becomes, up to quadratic terms in x,

(eo+ ia'x + Yx•)1 l (in - /)[I + (I - 1)(iax + bx2) +'•(1 -- 1)(1/- 2)(iax')] ...

=(eo +ia'x + bYxA)[•im - 1) + 6-(ni - 1)(in - 2)(lax + bx?)

-214(in - 1)(m - 2)(mn - 3)a 2 x2 ). (A.9)

"Only tie real part contributes to the spectrum, and for large in the contribution
becomes

to(Inm _-ll?3•a2•x ). 24(A. 10)

This has a height at x = 0 proportional to in. It has a half width at half maximum
determined by

217 ýj na'• X / =4In X1 =,,/6/ina (A. 11)

, which is inversely proportional to in, so tile function approaches a multiple of a delta

function as in -) co, The constant of proportionality depends slightly on the higher
terms in x. For example on taking (A.10) to be exact between its zeros and the
contribution from beyond this to vanish one obtains

limit( 'na x• 4 •0 .... ) 2.309ta 8 (x). (A. 12)
lim yein =7o
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Alternatively, fitting the left-hand side to the function (sin ky/y) whose limit for large k
is srS(y) one finds

li 2611 FO (x..,=]--.2--1-;()8() (A.13)
lim 2o n1 12 42r aIo ja,

A more accurate determination of the constant would be tedious and seems unneces-
sary for present purposes.
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to collisional studies*
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Ij
Summary. The manner in which laser spectroscopic techniques can be use to probe collisional pro-
cesses in atomic vapors is reviewed. A discussion of the saturation spectroscopy of three-level systems,
coherent transient spectroscopy, and a beamlaser spectroscopy system is presented. It is shown that
such experiments can provide useful information on both the total and differential cross sections for
atom-atom scattering.

Tesumt. Application de fo spectroscopic laser aux mudes co llesi Nous examunons la facon
dont les mthodes d spectroscopi laser peuvent te lo e utdlisies pour sender les processus collhsionnels.
On examine ral spectroscopic do saturation d ons les ustimes i trois niveaux, la spectroscopit des effets
htansitowes cohironts ainsi qu'unoe exprience dl spectroscopie par jet atoie ique et later. On montri

tquo do talles expsriences peuvent foumr des informateons importantes concernant t i a fois les sections
Sriefmcacents T yal l e y diffrent ainles d e diffusion atome-atom e.

AThe traditional method for studying atomic or molecular collisions is the use of crossed
atomic or molecular beams. Owing to the low beam densities one encounters, such studies
i ohave generally been restricted to atoms or molecules in ground or metastable states
however, it is now possible to use lasers to achieve substantial excited state atomic popur
lations so that scattering from excited states may also be studied in crossed beam expe.
coriments [I Typically, one obtains the differential scattering cross section as a function
of center-ofimass energy in crossed beam experiments. These experiments, although often
difficult to perform, provide a direct measure of the scattering process.

OiA somewhat less direct method for studying collisional processes in gases has been
cnavailable for many years under the heading peouree broadening. Since the absorptive
s hproperties of a vapor are affected by collisions occuring within the vapor, collisional
ainformation is implicitly contained in th. absorption or emission profiles associated with

Svarious atomic transitions in the vapor. Using linear spectroscopy, one can measure the
Sbroadening (or narrowing) of the spectral profile associated with a given transition of
S active atoms as a function of perturber gas pressure. From such data, one can reach some
<. conclusion regarding the total cross section for scattering between active atoms (in the
S• states involved in the transition) and ground state perturbers. Using saturation spectros-

copy or coherent transient techniques, one can also obtain information about differential
s*attering cross sections involving excited-state active atoms (see below), albeit of a some-

Swhat different nature than that obtained in beam experiments.
I Owing to time limitations, I shall not discuss linear spectroscopy [2], and shall, instead,

Sconcentrate on the saturation spectroscopy of three-level systems. I shall also mention
S some coherent transient experiments that are particularly wenl-suited to collisional studies
Sand a recent experiment employing a combination of atomic beam and laser spectros-

• • copic techniques,

S• (*)Supported by the U.S. Office of Naval Research.
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Before beginning to discuss three-leve1 systems, it is perhaps useful to describe the type
of collisional data one can hope to obtain from laser spectroscopic studies involving cells
rather than beams. In a typical experiment, one uses a laser to excite active atoms having
a specific longitudinal velocity and then probes the manner in which collisions with per-
turber atoms cause this velocity distribution to return towards equilibrium. Thus, in such
an experiment, one measures the differential scattering cross section averaged over the
perturber velocity distribution and the transverse active-atom velocity distribution. I have
referred to this as a poor man's differential scattering cross section, since it contains less
information than the corresponding cross sections obtained in beam experiments. Still,
the poor man's differential cross section is rich enough to draw conclusions concerning
the interatomic pote-'al giving rise to the scattering. Moreover, the variety of cross-
sections (elastic, inesstic, exchange, magnetic relaxation, etc.) that are easily probed
using laser spectroscopic techniques guarantees, in my opinion, a promising future for
this mode of collisional study.

Three.level systems
Three.level systems have received considerable attention [3-18] for both high resolution
and collisional studies. Figure 1 illustrates three types of three.level systems. The quan-
tities 1 and 13' label the different level schemes so that all may be treated by a single for.
malism ;1 = 0' = 1 in Figure ]a (upward cascade) ; 13 = 1, 13 = - 1 in Figure lb (inverse
V) ; 13 = - 1, 0'-= 1 in Figure Ic (V). The three levels are incoherently pumped at some
rate density Xi(v) (i = 1, 2, 3) and each level decays at some rate yl. External fields
having frequency r4 and fl' drive the I - 2 transition (frequency w) and 2 - 3 transition
(frequency o'), respectively. The field propagation vectors are ki and ek* (k = O/c,
k' = fl'/c) with e equal to either + 1 (copropagating) or - 1 (counterpropagating).
Spontaneous emission between level 2 and 1 is allowed at rate - 2'. The Rabi frequencies
associated with the I -2 and 2 - 3 transitions are denoted by X and x', respectively. I shall
limit the discussion to the upward cascade (Fig. Ia) and take X2 = X3 = 0 ; ?, "- 0
71 - 0, X,/'yj = constant, to simulate level I being the ground state. The field at fre-
quency 12 (pump) is of arbitrary strength and that at frequency 12' (probe) is assumed to
be weak.

The binary, elastic collisions between active atoms and ground state foreign gas per.
turbers are treated in the impact approximation [2]. Collisions are assumed to be phase-

77

(b)

(e) (c)

FIG. 1. - Three.level systems: (a) upward cascade, (b) inverted V. (c) V.
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interrupting in their effect on level coherences (giving rise to broadening and shift para-
meters) and velocity-changing in their effect on population densities (i.e. collisions result
in the relaxation of any velocity-selected population excited by the pump field). This
rather simple collision model is generally valid for electronic transitions.

The pump field is detuned a fixed amount A from the 1-2 transition and the probe
absorption is monitored as a function of its detuning A' from the 2-3 transition. If u is
the most probable active atom speed, then two cases of interest are IAI > ku, IAI < ku.

1AI > ku
If the pump detuning is equal to several Doppler widths, the only resonance in the absence
of collisions occurs at A' = - A + (k + ek') v,. When averaged over the active atom
velocity distribution, the resulting line shape is a Voigt profile centered at A' = - A with
a width obtained form the convolution of a Lorentzian of width (HWHM) 73/2 and a
Gaussian of width 0.83 (k + ek') u, if k ; k' and e = - 1, this two-photon resonance
can be very narrow.

With collisions present, a new resonance centc red at A' = 0 can result from a colli-
sionally-aided radiative excitation [19] of level two. the reaction.

AI +P+hfQ- A2 +P
where A, is the active-atom in state i and P is the, perturber. The difference in energy
between hfl and hw is now compensated by a corresponding change in the atoms' kinetic
energy following a collision. With collisionally-aided excitation of level 2, probe absorp-
tion on the 2-3 transition centered at A' = 0 can occur.

Thus, in the absence of collisions, there is only one resonance centered at A' = - A.
In the presence of foreign gas perturbers, a new resonance appears at A' = 0 which grows
with increasing pressure. The width and shift of the A' = - A resonance can be used to
obtain the 1-3 broadening and shift coefficients, that of the A' = 0 resonance to obtain
the 2-3 broadening and shift coefficients. Moreover, the amplitude of the A' = 0 reso.
nance is proportional to the 1-2 broadening coefficient. Recent experimental data 120]
on Na(3S1 /2 - 3PI/2 - 4D3/2) perturbed by Ne is shown in Figure 2. The effects of
collisions for this large detuning case (A = - 4.0 ku, k'l/k = 1.0375, e = - 1) are clearly
seen (the second narrow resonance centered at A' = 5.77 ku arises from ground state
hyperfine structure).

IAI < ku
The above type of experiment can provide total cross section data (total cross sections
may be extracted from the broadening coefficients). However, to obtain information
concerning differential cross sections, one must tune within the Doppler width. In this
case, the pump laser selects a specific longitudinal velocity group having v. = A/k,
leading to a resonance condition A' = - A + (k + ek') v. = e (k'/k) A. The resonance
width is on the order of the natural widths of the transition levels, owing to the fact that
only a small longitudinal velocity class of atoms is being used. The resonance is broadened
and may even be split in strong pump fields, reflecting power broadening and the ac
Stark effect, respectively. Probe absorption in the absence of collisions is shown in
Figure 3 for k'/k = 0.4. There is ac Stark splitting for counterpropagating waves in strong
fields. For the case shown o" conplete branching to the ground state (72' = 72) there
is also some splitting for the ct.nropagating case.

In the presence of collisions, tne following interactions can occur:

AI + P + h -. A2 (v' = ')+ P

A 2 (vz' =A/k) + P -A 2 (Vz2 ) P
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Na + NEON

; I >

A.-4 06O

20TORR

FIG. 2. - Experimental exc itation spectra for Na P3S -. 3P -. 4D) perturber by various pressures of
Ne for a pump detuning 4l2 xr = - 4.0 GIII. (Doppler width = 1.66 kul2wr = 1.66 611:.). Dots

* I represent theoretical fit with no free parameters.

N 3 2u01 PRO
N3280 &S/X 2

1.5 X 80.1 FIG. 3. - Probe absorption 1. in the
absence of collisions. I is normalized
to x2. but is in arbitrary units. All
frequencies are in units of ku, P is the
pressure in Torr, and N32 (popu.
lation difference of levels 5' and 2 in

30 the absence of any applied fields)
A XO.01 equals zero. The broken curve is for

_ _ _copropagating fields (e = 1) and the
solid curve for counterpropagating

100ý , *.O• O ones ,e =-1). Profiles are drawn
10 fo = 0 ,=.o 0

,_73 =_ .0, =/ k•I=.4.
-1.0 -0.4 0 0.4 1.0 ='-I A=--1. and several values of x.

f Collisions result in an excitation of level 2 and a partial thermalization of the velocity
distribution from the initial value v,' = A/k selected by the pump field to values des.

Scribing a thermal distribution. The degree of thermalization is determined by the number

of collisions It = •2/72 (172 = collision rate) occuring within the lifetime of level 2 and
the rms change in velocity per collision Au. In addition, the structure of the velocity

I- redistribution may be used to infer something about the interatomic potential giving rise
to the scattering.

Theoretical probe absorption profiles for weak and strong pump fields are shown in

Figures 4 and 5, respectively, using the Keilson-Storer [211 collision kernel. One may note

the gradual thermalization with increasing perturber pressure. In the strong field case

4
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" Am- �4 s-4 X 1.0 xlO"4

N32 .0 1,/X2

P p 20

•i, 
,5

FIG. 4. - Probe absorption in the weak pump
field limit for warious perturber pressures,
Parameters not explicitly displayed are the
same as in Figure 3. Collision parameters (in

118 units of ku) are as follows : phase.interrupting
P o o 0b r o a d e n i n g r a t e s ' j 2 = .0 0 7 P , r ' ,.5 P .

1 "13 = . O0 1 6 ? ; v e l o c i t y -c h a n g i n g c o l sio n r a t e s

i = .004P , r2 = .00 6P . A K ellso n .Storer
kernel with Au = .66u Is used to describe velo.

-2 -1 0 A4 1 2 a! city.changing collisions.

A 45 (-1 X80.2

N33Z0 I./X.

P 20

P 

_I

0.4

0.6

FIG. S. - Probe absorption for af I strong pump field (x = .2). Other
-2 -I 0 1 2 A! parameters are as in Figure 4.
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both the integrated and peak probe absorption can increase with increasing pressure
whereas, in the weak field case, the areas under the curves are constant.

Systematic experiments of this nature were recently carried out by Brdchignac et al.
[21] in Kr perturbed by rare gases and by Liao etal. [23] for Na perturbed by rare gases.
The data for Na(3S,/ 2 -* 3PIl2 -* 4D3/2) perturbed by Ne is shown in Figure 6 for a
detuning A/ku = - 1.6. The overall qualitative features are similar to those shown in
Figure 4 (for the three-level Na system chosen, k/k = 1.0375 so that ac Stark splitting
is suppressed). One can see the thermalization of the 3PI/2 level of Na with increasing
Ne pressure.

The data of Liao et al. [23] could also be used to test different collision kernels that
are used to describe scattering in level 2. It was found that both the Keilson-Storer and
classical Hard-Sphere kernels correctly characterized Na-He collisions, that the hard.
sphere kernel was superior to Keilson-Storer for Na-Ne and Na-Kr collisions, and that
neither kernel adequately described the entire profile for Na-Ne and Na-Kr collisions.
These results imply that large-angle scattering of Na(3Pzl/) with heavy foreign gases can
not be characterized as totally hard-sphere in nature ; it would not be surprising if some
large-angle scattering could be attributed to attractive wells in the interatomic potentials.
It appears to me that this type of experiment reflects an increased Interest in both the
experimental and theoretical 1241 determination of atomic collision kernels,

Na + Ne

-/ý 4. oi15 ,/...* Q.ol I.

0.0 roA•

S• 5.0 r0R,•

I tio To"a

O A*0 TORS

FIG. 6. - Experimental excitation spectra for Na (3S -, 3P -. 4D) perturbed by various pressures of
Ne with a pump detuning of - 1.6 GHz.

Coherent transients
It is also possible to carry out laser spectroscopic collisional studies using time resolved
techniques. Some of these methods are particularly well suited to collisional studies.
I shall mention two such types of experiments.

In time-delayed saturation spectroscopy, one uses a narrow band, pulsed laser to
excite atoms having a given longitudinal velocity. A second laser, time delayed from
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the first, is thien applied to the ;ame or a coupled transition in order to mvunitor the-
*velocity relIaxation as a function ofleither time delay nz perturber pressure.An advantage

Of this techni~que to steady-state methods is that 'two-photon processes do not occur i~i
'the time-resolved experiment since the fields are 'applied at different Li-mes. Thus, the
probe abscrption occurs only from step wise, eN:citation, greatly simplifying the analysis.
A limited n~umber of experiments of this type have bzip performed [25].

A second class of experiments which holoas promise for collisional ctudies may be
broadly characterized as photon echo experimeots. In these exp~erijnents. a system is
exposed to two or more pulses. The pulses lead to a dephas; g and rephasing of atomic
dipoles in the sample such that, at some time following the last applied pulse, the dipoles
rephase and emit an echo. Collisions distutb this dephasing-rephilsitig proce-ss and cause
a decrease hin echo amplirtude. T'hus, the echo amplitude can be used to monitor colli.
sional processes in gases. This method is especially useful -it jeterminhig Whether colli-
sions are phase-inte,-nupdln? or v'docioy changing in their effect on level Coherences [ 13,
14, 26].

By using standing waves as the excitation pulses, onie axcites higher-brder harmonics
in both populations and lvvel cohorences. The photon echoe~s following such excitation
can reflect collisional effects on both population densities and level coherences [27].
Moreover, one can also observe population echoes as various population spatial harniottics
rephase following the second pulse [281. Studies of velocity-changing collisions on level
populations can also be made using stimulated echoes [29], wlich is simply a variation
of the standing-wave echo method. Photon eeho experiments offer ani inte resting possi.
bility for future collisional investigations [28, 29].

Beamlaaer experiment
Finally, I should like to mention the experiment of Phillips et al. [30]. This experiment
employed crossed atomic beams and a laser excitation-detection scheme. As in the
steady-state experiment, a pump laser excites a particular velocity class of atoms to
some intermediate state. A second laser, directed along the active atom-perturber relative
velocity axis,is then scanned to probe a coupled transition. At each probe laser frequency,
only those active atoms which have been scattered through a particular scattering angle 0
(these atoms form a cone of angle 0 about the laser axis) in the center-of-mass system
resonantly interact with the probe. Thus, measuring the probe absorption is equivalent
to measuring the differential scattering cross section. This method has high sensitivity and

~' can be used for short-lived excited states; it was used to determine the differential cross
section for 3/2-~ 3P3/2 fine structure state changing collision~s in Na undergoing4
collisions with Ar perturbers [301.
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